Particle Physics with Neutrons

Download Report

Transcript Particle Physics with Neutrons

Teilchenphysik –

ohne Beschleuniger

und Kosmologie 31.5.07

Sommersemester 2007

2. CP-Verletzung

Hartmut Abele, University of Heidelberg

2

H.W. Wilschut

3. Symmetries and the World according to Escher

start

P

matter

C

anti-matter

T

identical to start

anti-particle particle e + e -

mirror image time time Time reversal violation can be measured at low energies 3

BABAR 2001

Hartmut Abele, University of Heidelberg

4

3. Prinzip: CP-Verletzung

spin elementary particle EDM

-

+ P + (P - known)

-

+ T Hartmut Abele, University of Heidelberg

-

+ (CP big deal)

CP ↔ T

S. Paul, TUM

5

ILL: the EDM experiment

Hartmut Abele, University of Heidelberg

6

Final Sussex-RAL-ILL result

use of 199 Hg co-magnetometer

d

( 199 Hg) < 8.7 × 10 -28

e

cm 50 pT

Hartmut Abele, University of Heidelberg

(C.A. Baker et al. PRL 97(2006) 131801) |

d n

| < 2.9 x 10 -26

e

cm (90% CL) 7

EDM: PSI

F overall = 100 

d F N

 (

N EP

2  )  1  40 ,

F E

 2 ,

F P

2  1 .

3 ,

F

  1 .

1 ,

Hartmut Abele, University of Heidelberg

8

The PNPI experiment

EDM •Polarize neutrons ||

B

0 •Apply B( w t)

B

0 while filling the bottle to get neutron spin to

B

0 •Wait for a time

T

(~100 s): spin precesses about

B

0 •Apply B( w t) to get neutron spin || to

B

0 ; if

w w L

•Analyze polarization:

P

=

P

0 cos(

) Hartmut Abele, University of Heidelberg = (w - w L ) T

9

Improvements

Mainly performed by the group at PNPI (V. Lobashev et al.): official collaboration agreement with TUM  (

d

n )  2 

N

• higher degree of polarization – triple polarizers:

a

= 0.75 • higher electric field

E

- new material (CERAN):

E

= 10 kV/cm • more neutrons

N

- FRM II + UCN source, more efficient neutron guides • • longer storage time

T

- better coating, better stability of

B

0 :

T

Systematic errors:

stable

B

0

(3fT!) 3 150 s He magnetometer with SQIDs (W. Heil, Mainz

),

better shielding, polarization and analysis with the same arrangement

Hartmut Abele, University of Heidelberg

10

Überblick zur die Sensitivität von Neutronexperimenten EDM: Energy:

E ~0.000 000 000 000 000 000 000 1eV = 10 -22 eV n-Ladung: Impuls:

p/p ~ 10 -11 (Winkelauflösung von 1Å auf 10m) Feinstrukturkonstante

 

/

~ 10 -8 (Messung von:

n v n ) Quark-Mischung

Vud ~ 7 x 10 -4 Lebensdauer

 

/

~ 10 -3 Gravitation und QM

g/g ~ 10 -2 Hartmut Abele, University of Heidelberg

11

EDM Strong CP problem

Axion als pseudoskalares Teilchen Hartmut Abele, University of Heidelberg

12

Axion limits 2007

PVLAS Baeßler et al.

Westphal, Baeßler, H.A.

arXiv:hep-ph/0703108 UCN other limits Hartmut Abele, University of Heidelberg

13

2. Prinzip: Mischung der Quarks

-Zerfall: ~ G F 2 n-Zerfall:~ 0.95

. G F 2 = cos 2

C . G F 2 K-Zerfall: :~ 0.05

. G F 2 = sin 2

C . G F 2 100% 50% 0% 'down' 'strange ' 'bottom' down strange bottom

   

d s b

         V ud V V cd td V us V cs V ts V ub V cb V tb        

b

|V ud | 2 + |V us | 2 + |V ub | 2

Quarkmischung ist Rotation im Flavour-Raum (Null-Summe) CKM-Matrix ist unitär!

Hartmut Abele, University of Heidelberg

= 1   14

Unitarity Check: The Quark Mixing CKM Matrix

Parametrization: 3 angles, and a phase A,  ,  are real

Hartmut Abele, University of Heidelberg

15

Unitarity Check II:

U CKM

    V ud V V cd td V us V cs V ts V ub V V cb tb    PDG:  = 59 °  13 ° ,  = 24 °  4 °

Hartmut Abele, University of Heidelberg

16

Unitarity Check II

dsf V ud = 1 -



2 /2

From A. Buras, Munich

Hartmut Abele, University of Heidelberg

17

Unitarity check

U CKM

      V V V ud cd td V us V V cs ts V V V ub cb tb      Mixing of quarks = rotation in flavor-space: Test in first row:

|V ud | 2 + |V us | 2 + |V ub | 2 ≈ cos 2 θ + sin 2 θ + 0 < 1

: Cabibbo ?

Hartmut Abele, University of Heidelberg

V

ub

V

us 0.00001% 5%

V

ud 95%

18

Situation 1995 - 2004

V ud

 0.9717(13)

V ud

 0.9738(4) 0 +  + 

V ud

 0.9728(   0.0

040  0.

001 2

Hartmut Abele, University of Heidelberg

19

The PDG feels it has the right to redefine anything it wants 1994: The “centimeters” on the ruler on p. 227 of the booklet Is there a general decline of standards?

a) The booklet were returned from the printer at 0.25 times the speed of light a) A theorist is in charge of the PDG b) The PDG feels it has the right to redefine anything it wants c) There is a general decline of standards d) There was an international conspiracy e) It was a congressionally mandated cost-saving measure f) PDG gives you more cm/inch than anyone else Hartmut Abele, University of Heidelberg

20

V us

 

G F V us

2

m k

5

C

2

f

1 ( 0 ) 2

I

( 1  192 π 3

Kaon semileptonic decays

-

K +

p

0

l

+

n

l

-

K 0 L

p

-

l

+

n

l s

u

l

+

n 

= (2.12±0.08%),

d

= -2.0% for K + l and 0.5% for K 0

d )( 1  

R

)   

I + = 0.1605 ± 0.0009, I 0 = 0.1561 ± 0.0008

 

= (2.56 ± 0.033)10 -15 MeV,

 0

=(4.937 ± 0.053)10 -15 MeV f(0) = 0.961 ± 0.008, f(0) = 0.963 ± 0.004

V

us

= 0.2196

±

= 0.2196

±

0.0017

exp ±

0.0018

th

0.0026 (PDG 2002)

Hartmut Abele, University of Heidelberg

21

Some news in 2005: V

us b Hartmut Abele, University of Heidelberg

22

CKM unitarity summary

Phase of consolidation Achievements: New K results New A result Halving of the theoretical error in radiative corrections Continue to measure lifetime and correlation coefficients until limited by theory Lifetime Formfactors Hartmut Abele, University of Heidelberg

23

Neutronlebensdauer

Methode: UCN in Flaschen Präzision

 

/

~ 10 -3 ~ 99.99 % elastische Reflexion ~ 0.01% inelastische Reflexion in meV-Bereich

~

0.001% Absorption 885.7 ± 0.7 sec 878.5 ± 0.8 sec

  1  

n

 1    1

TUM: magnetische Speicherung: keine Verluste Hartmut Abele, University of Heidelberg

)  0 ) exp  

t

TUM

24

2 values 878.5 ± 0.8 sec Serebrov et al.

885.7 ± 0.7 sec PDG 2005

900 895 cold beam UCN 890 885 880 875 870 865 1975 1980 1985 1990 year 1995 2000 2005

Hartmut Abele, University of Heidelberg

= 2 x 10 -6

25

Neutrons and Big Bang Nucleo Synthesis Problem 1s after Big Bang: What does a gas of n and p, when the universe expands and the temperature drops?

Inputs : neutron lifetime

Cross sections neutrino cross-sections

1/

 

nuclear physics 0.1 – 1 MeV (measured!) Outputs: H, D, He, Li number of particle families N density

universe of (ordinary) matter in Hartmut Abele, University of Heidelberg

26

In more detail

Weak reaction rate n + e +

p +

n

e n +

n

e Hubble expansion rate

p + e Equating gives freeze out temp.

Free neutron beta-decay

  1 ~

V ud

2

G F

2 (1  3

g A

2 )

Neutron lifetime PDG 2006 Y p = 0.2479(6) Hartmut Abele, University of Heidelberg Serebrov et al.

2005 Y p = 0.2463(6 ) astro-ph/0408523 v2

27