Particle Physics with Neutrons

Download Report

Transcript Particle Physics with Neutrons

Gravity at Micron
Hartmut Abele
Galileo in Pisa
Objekt: Neutron
Höhe: ~ 50 mm
V (r )  G
m1  m2
(1    e  r /  )
r
Fallhöhe > 50mm
Fallhöhe < 50mm
Hartmut Abele, Universität Heidelberg
2
Hydrogen atom
QM
QM: bei gebundenen Zuständen diskrete Energieniveaus
Aufenthaltswahrscheinlichkeit: Quadrat der Wellenfunktion n,l,m(r,,)
Hartmut Abele, Universität Heidelberg
3
0,6
Airy-Funktion
Gitarre
0,4
Energie
0,2
mgz
0,0
-0,2
Abstand vom Spiegel
-0,4
-12 -10 -8
-6
-4
-2
0
2
4
6
Abstand vom Spiegel
Hartmut Abele, Universität Heidelberg
4
Rb Atoms Bouncing
in a Stable Gravitatonial Cavity
E. Hinds et al.,
Yale, Imperial College
E. Hinds et al.,
Yale, Imperial College London
Hartmut Abele, Universität Heidelberg
5
The quantum bounce
Hartmut Abele, Universität Heidelberg
6
Quantum bounce
Hartmut Abele, Universität Heidelberg
7
Observation of Bound Quantum States
Energy
mgz
Distance to Mirror
Neutron mirror:
polished glass plate 10 cm long
Hartmut Abele, Universität Heidelberg
Nature 415 299 (2002), Phys. Rev. D 67 102002 (2003). 8
Schrödinger Equation
h2

  V ( z )  E
2m
V (z )  mgz for z  0 and V (z )   for z  0
 n ( )  Ai(   n )
 
z
z0
E 
zE
z0
zn  z 0 3 (
zE 
E
mg
3
1
(n  ))2 .
2
4
Energy
mgz
Distance to Mirror
Characteristic Energy Scale:
2
2 2
9

mg
h
3
0 
8
Characteristic Length Scale:
z0 
3
h2
2m 2g
Hartmut Abele, Universität Heidelberg
9
A comparison: Neutrons, Atoms and
Electrons
e+nSystem
1013ly
Hartmut Abele, Universität Heidelberg
10
2nd Run 2002
z1exp  12.2 1.8syst  0.7stat , mm
z2exp  21.3  2.2syst  0.7stat , mm
Hartmut Abele, Universität Heidelberg
V. Nesvizhevsky et al., EPJ, 2005
11
Reversed
Geometry
A. Westphal, 2001
Hartmut Abele, Universität Heidelberg
12
the Experiment
Neutron detection:
a)
He – detector
n + 3He  t + p
(no spatial resolution)
b)
Track detector
n+
n+
Hartmut Abele, Universität Heidelberg
235U  fission
10B
 Li + 
13
15
mm
How does the
detector work?
120 mm
Uranium or
Boron coating
X
UCN neutrons
CR39 Plastic
Fission
fragment
~0.2m
Hartmut Abele, Universität Heidelberg
14
CR39 track detector
Uranium Detector
Boron Detector
Hartmut Abele, Universität Heidelberg
15
~ 200µm
Hartmut Abele, Universität Heidelberg
~ 10 cm
16
1
Neutron Density Distribution
with Spatial Resolution Detector
Y2
0.8
0.6
First three levels
0.4
0.2
10
Hartmut Abele, Universität Heidelberg
20
20
30
40
40
50mm
60
80
V. Nesvizhevsky et al., EPJ, 2005
17
C. Krantz,
Diploma thesis, 2006
Hartmut Abele, Universität Heidelberg
18
Bestimmung von g
g = (9.8 ± 0.2) m/s2
Hartmut Abele, Universität Heidelberg
19
3.2.2 Newton´s Law and the Question of Large
Extra Dimension of Space and Time
Deviations from Newton's law 1/r2 to 1/r2+n,
for n extra large dimensions.
Motivated by the problem of
supersymmetry breaking, new scalar
forces in the sub-millimeter range for a
supersymmetry breaking scale of 1 – 10
TeV. These correspond to Compton
wavelengths in the range of 1 mm to 10
mm.
Repulsive forces mediated by possible
abelian gauge fields in the bulk. The
strength of the new force would be 109 to
1012 times stronger than gravity.
MPl ( 4)  r M
2
n
n
n 2
Pl ( 4 n )
m1  m2
V (r )  G
(1    e r /  )
r
Hartmut Abele, Universität Heidelberg
MPL
MnPL
g 42 ~
1
rn2M(n4 n )
M(24 n )
~
M(24)
20
Limits for alpha and lambda
Green: Neutron Limits
Hartmut Abele, Universität Heidelberg
m1  m2
V (r )  G
(1    e r /  )
r
21
Kollaboration
LPI, Moscow
A. Voronin
ILL Grenoble
V. Nesvizhevsky, A. Petukhov, H. Boerner, L. Lukovac, S.
Roccia
Universität Heidelberg
N. Haverkamp, C. Krantz, D. Mund, S.Nahrwold,
F. Rueß, T. Stöferle
PNPI, Gatchina
A. Gagarsky, G. Petrov, S. Soloviev
LPSC, Grenoble
SISSA (Italien)
K. Protasov
A. Westphal
JINR, Dubna
U. Mainz
A. Strelkov
S. Baeßler
Univ. Gent
J. Schrauwen
Hartmut Abele, Universität Heidelberg
22