Kein Folientitel

Download Report

Transcript Kein Folientitel

INGAS INtegrated GAS Powertrain
CVUT-JBRC
Scope
Experimental Facilities – General Features – InGAS Customizing
Simulation Facilities – Overview of Engine Models Layout – InGAS usability
EF (WPB0.4) – Calibration Data
Basic Adjustment
Initial Evaluation of Fuel Blend Behavior
SF (WPB0.2) - In-house Model OBEH Recalculation of HR Patterns
GT-Power Model Tuning
2-zone Approach – Knock Tendency Description
INGAS 6 months Meeting, Prague, 25-26 May, 2009
1
INGAS INtegrated GAS Powertrain
CVUT-JBRC
Experimental Facilities
4102/120 Testing Engine
Engine Features:
Compression Ratio: 12
Up to 20 bar BMEP
Boost pressure up to 1.4 barg
= 1 (Closed Loop) or Lean Burn
VGT
Cooled EGR up to 20 %
Test Bench Equipment:
DC Dynamometer
Complete DAQ
Gas Analyzers – Exhaust / Intake
TPA (Cylinder, Turbine – Inlet/Outlet)
Instantaneous Speed – Engine, Turbo
Knock Recognition/Quantification
INGAS 6 months Meeting, Prague, 25-26 May, 2009
2
INGAS INtegrated GAS Powertrain
CVUT-JBRC
Experimental Facilities
On-line Controllable Delivery of Max. of 2 Fuel Additives into Intake Manifold
TNG
Additional Fuel A
SetPoint 
 Feedback
Test Bench
Computer
Additional Fuel B
INGAS 6 months Meeting, Prague, 25-26 May, 2009
3
INGAS INtegrated GAS Powertrain
CVUT-JBRC
Experimental Facilities
4 102/110 Engine
Appropriate for:
Emulation of “Low Cost” Version;
“Steady State” Knock;
Preliminary Testing;
INGAS 6 months Meeting, Prague, 25-26 May, 2009
Engine features:
Compression Ratio: 10
Low BMEP
Low Boost Pressure
Uncontrolled Turbocharger
= 1 (Closed Loop) or Lean Burn
No EGR
Experimental Equipment:
AC (W-E) Dynamometer (No Closed
Loop Control)
Complete DAQ
TPA (Intake/Cylinder/Exhaust “Close to
Cylinder” Arrangement)
Controllable Delivery of Fuel Additives
(Sampling of Working Substance from
Cylinder during Compression Stroke)
4
INGAS INtegrated GAS Powertrain
CVUT-JBRC
Simulation Means
OBEH (= CYCLE) – In-House Engine Working Cycle Model
Source Code Written in FORTRAN (DOS Based)
0-D
Description of Working Substance Behavior Inside the Cylinder by Differential
Equations
Description of Engine Manifold and Accessory (Including Turbo) by Algebraic
Equation
Inertia of Gas Bulk Flows NOT Involved
Basics:
HR Description by Vibe’s Function
Czallner – Woschni Recalculation Formulas
Heat Transfer Selectable Woschni’s and/or Eichelberg’s
Dedicated Among Other for Use in Education Activities
Supplements:
Temperature of Unburned Zone & Ignition Lag
Automated Tuning/Optimization – Pre & Post Processing (Excel-Based)
In-House HR Recalculation Routine
INGAS 6 months Meeting, Prague, 25-26 May, 2009
5
INGAS INtegrated GAS Powertrain
CVUT-JBRC
Simulation Means
GT-Power – Commercial Engine Model
(JBRC = Official Partner of Gamma Technologies)
Version: 6.2
1-D
Engine(s) Geometry Imposed According to Physical Reality
102/120 Engine => Turbine & Compressor Maps Obtained from TC
Manufacturer
Calibration Data:
Set of Engine Integrated Parameters
Angle-Resolved Patterns of:
In-Cylinder Pressure
Manifold Pressure
Turbo Speed
INGAS 6 months Meeting, Prague, 25-26 May, 2009
6
INGAS INtegrated GAS Powertrain
Simulation Means
CVUT-JBRC
Knock Recognition/Quantification Routine
1.2
1
2000
Tcyl
0.8
140
4000
0.6
1000
In-cylinder pressure
3500
measured
In-cylinder pressure
calculated
Mean in-cylinder
3000
temperature experiment
Mean in-cylinder
temperature calculated2500
120
0.4
500
Knock Evaluation
0
-100
0.2
0
-50
0
50
Crank angle [deg]
100
100
80
2000
60
1500
40
1000
20
Experimental Data
Model Calibration
0
-100
500
0
-50
0
50
Mean in-cylinder temperature [K]
exhausted ignition delay
1500
Cylinder pressure [bar]
Tcyl, Tunb [K]
Tunb
Experimental Verification
exhausted ignition delay [1]
2500
100
Crank angle [deg]
INGAS 6 months Meeting, Prague, 25-26 May, 2009
7
INGAS INtegrated GAS Powertrain
CVUT-JBRC
Full Load Curve Proposal
Boost Pressure Adjustement
180
160
140
120
100
Throttle Position 0=IDLE, 160=WOT
80
VGT Rack 0=max A_nozzle, 80=min A_nozzle
Boost Pressure [kPag]
60
Exhaust Back Pressure [kPag]
40
Turbo Speed [1000/min]
20
0
1200
1400
1600
1800
2000
2200
2400
2600
2800
Engine Speed [1/min]
INGAS 6 months Meeting, Prague, 25-26 May, 2009
8
INGAS INtegrated GAS Powertrain
Full Load Curve Proposal
CVUT-JBRC
Ignition Timing & EGR Adjustement
30
850
25
750
20
700
650
15
600
10
550
Ignition Timing [deg CA bTDC]
Knock Intensity, 0=Knock-Free, 5=Heavy Knock
EGR rate [%]
5
Exhaust Temperature Upstream of the Turbine [°C]
Exhaust Temperature
Ign.Timing, Knock Intensity, EGR
800
500
450
Exhaust Temperature Downstream of the Turbine [°C]
0
1200
1400
1600
1800
2000
2200
2400
2600
400
2800
Engine Speed [1/min]
INGAS 6 months Meeting, Prague, 25-26 May, 2009
9
INGAS INtegrated GAS Powertrain
Full Load Curve Proposal
140
2500
120
2450
100
2400
10% burnt [deg CA aTDC]
50% burnt [deg CA aTDC]
80% burnt [deg CA aTDC]
Peak Pressure [bara]
Peak Pressure Position [deg CA °aTDC]
Peak Temperature [K]
80
60
40
2350
2300
TMAX [K]
CrankAngle [deg CA], pMAX [bara]
CVUT-JBRC
2250
20
2200
0
-20
1200
1400
1600
1800
2000
2200
2400
2600
2150
2800
Engine Speed [1/min]
INGAS 6 months Meeting, Prague, 25-26 May, 2009
10
INGAS INtegrated GAS Powertrain
CVUT-JBRC
Full Load Curve Proposal
2200
11
2000
10.8
1800
10.6
10.4
1400
10.2
1200
10
1000
bmep VGT (Final) [kPa]
bmep WG (Previous) [kPa]
bmep Diesel [kPa]
bshc VGT (Final) [MJ/kWh]
bshc Diesel [MJ/kWh]
800
600
400
900
1100
1300
1500
1700
1900
2100
2300
2500
2700
9.8
9.6
9.4
2900
eRPM [/min]
INGAS 6 months Meeting, Prague, 25-26 May, 2009
11
bshc [MJ/kWh]
bmep [kPa]
1600
INGAS INtegrated GAS Powertrain
CVUT-JBRC
Full Load Curve WG -- VGT
10% burnt [deg CA aTDC]
35
860
50% burnt [deg CA aTDC]
80% burnt [deg CA aTDC]
30
Original - WG
Improved - VGT
AKR 0=Knock Free, 5=Heavy Knock
840
Exhaust Temperature
820
800
20
780
15
760
10
tEXHAUST [°C]
CrankAngle [deg CA]
25
740
5
720
0
-5
1200
700
680
1400
1600
1800
2000
2200
2400
2600
2800
Engine Speed [1/min]
INGAS 6 months Meeting, Prague, 25-26 May, 2009
12
INGAS INtegrated GAS Powertrain
-control Adjustment
CVUT-JBRC
140
130
120
110
100
90
Actuator Pos 0=min A_fuel, 255=max A_fuel
80
0
10
20
30
bmep=1.8 bar
bmep=10 bar
1.3
40
50
60
Torque [% fluctuation]
Fuel Flow [% fluctuation]
1.2
1.1
1
0.9
0.8
0
10
20
30
40
50
60
1
0.8
0.6
0.4
Lambda Sensor Voltage [V]
0.2
0
0
10
20
INGAS 6 months Meeting, Prague, 25-26 May, 2009
30
time [s]
40
50
60
13
INGAS INtegrated GAS Powertrain
CO2 Addition – Initial Evaluation
CVUT-JBRC
Values Averaged from 80 Acquired Cycles in Each Operating Point
2600
2400
90
CAxx [°CA], pMAX [bar]
2200
70
CA2
CA5
CA50
CA95
pMAX
TMAX
CA90
2000
50
1800
1600
30
1400
10
1200
-10
1000
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
vAf [m3CO2/m3(CO2+TNG)]
INGAS 6 months Meeting, Prague, 25-26 May, 2009
14
TMAX [K]
110
INGAS INtegrated GAS Powertrain
CO2 Addition – Initial Evaluation
CVUT-JBRC
Cycle-to-Cycle Variablity
80
70
60
CAxx [°CA]
50
40
noCO2al2
noCO2al5
noCO2al95
37%CO2_al2
37%CO2_al5
37%CO2_al95
30
20
10
0
-10
0
10
20
30
40
50
60
70
80
Cycle #
INGAS 6 months Meeting, Prague, 25-26 May, 2009
15
INGAS INtegrated GAS Powertrain
CVUT-JBRC
CO2 Addition – Initial Evaluation
10.5
1400
Cycle-to-Cycle Variation
bshc
bmep
90
14.9
80
14.8
1380
70
14.7
1370
1390
bshc [MJ/kWh]
bmep [kPa]
10.3
10.2
10.1
15
IMEP [bar]
10.4
MaxP [bar]
100
60
14.6
50
14.5
40
10
1360
14.4
30
1350
9.8
20
10
9.7
1340
0
0.05
0.1 vAf 0.15
0.2
0.25
0.3
[m3CO2/m3(TNG+CO2)]
0.35
14.2
14.1
0
14
0
0.4
6000
14.3
NoCO2_MaxP
37%CO2_MaxP
NoCO2_IMEP
37%CO2_IMEP
9.9
10
20
30
Cycle
40 #
50
60
70
80
66
740
16
64
720
14
62
18
3000
12
10
8
700
60
680
58
pK3
pT1
pK2
tT1
tT2
56
2000
6
4
1000
0
0
0.05
0.1
0.2
0.25
0.3
vAf 0.15
[m3CO2/m3(TNG+CO2)]
INGAS 6 months Meeting, Prague, 25-26 May, 2009
0.35
0.4
t_exhaust [°C]
4000
p_manifold [kPag]
CO, HC, NO [ppm]
HC
CO
NO
CO2
O2
CO2, O2 [%]
5000
54
2
52
0
50
660
640
620
600
0
0.05
0.1
0.2
0.25
vAf0.15
[m3CO2/m3(TNG+CO2)]
0.3
0.35
0.4
16
INGAS INtegrated GAS Powertrain
OBEH – HR Recalculation Strategy
CVUT-JBRC
OBEH – Recalculation of HR Pattern for Various Operational Conditions
3000
70
1
  1.6
50
Temperature
40
1500
30
pcyl [bar]
Tcyl [K]
2000
 5%   5%   spark
60
2500
 50%   50%   spark
 90%   90%   spark
1000
20
500
1.2
-20
60 CrankAngle
100 [°CA]
20
0.05
  1.6 recalculated
1
Qnm [1]
0.8
Heat release
  1 (reference)
Qnm = const.
0.04
0.03
0.6
0.02
0.4
Ignition
0.01
0.2
Rate-of-Heat-Release
0
-100
0
-60
-20
20
60 CrankAngle
100[°CA]
INGAS 6 months Meeting, Prague, 25-26 May, 2009
 50%   50% ref  H
G   gi
 90%   90% ref  G
i
H   hi
fi,gi and hi are polynomial functions of:
0
-60
F   fi
10
Pressure
dQnm [1/°CA]
0
-100
 5%   5% ref  F
Air excess
Pressure and temperature at 60° bTDC
Residual gas (+EGR) fraction (?)
Ignition timing
Engine speed
Proven Usable
for Various Fuel
Implemented
into GT-Power
Compositions Providing:
Simulation
Reference cycle for Given Fuel
is Available
17
INGAS INtegrated GAS Powertrain
CVUT-JBRC
GT-Power Model Layout
Three Pressure Analysis – TPA (Single Cylinder Model 4102/110)
Measured In-cylinder
Pressure
Measured Exhaust
Port Static Pressure
Measured
Intake Port
Static Pressure
Sampled TPA Outputs
pcyl, Tcyl, Tunb, Tburn, mcyl, Mass fractions
INGAS 6 months Meeting, Prague, 25-26 May, 2009
18
INGAS INtegrated GAS Powertrain
CVUT-JBRC
GT-Power – TPA Calibration
Three Pressure Analysis – Results 1600 rpm,  = 1, W.O.T.
INGAS 6 months Meeting, Prague, 25-26 May, 2009
19
INGAS INtegrated GAS Powertrain
CVUT-JBRC
GT-Power – TPA Calibration
Three Pressure Analysis – Results – 1600 rpm,  = 1
3
3
bmep = 2.1 bar
bmep = 10.2 bar
2
Pcy
pIN
pEX
2
pressure [bar]
pressure [bar]
pcyl_GTP
1
1
pcyl_GTP
0
-180
0
Pcy
180
pIN
360
Crank Angle [dagCA]
INGAS 6 months Meeting, Prague, 25-26 May, 2009
pEX
540
720
0
-180
0
180
360
540
720
Crank Angle [dagCA]
20
INGAS INtegrated GAS Powertrain
CVUT-JBRC
GT-Power - Layout
4102/120 Engine Model
pressure [bar], turbine pressure
ratio [-]
3
69000
2.5
turbo speed [rpm]
68000
2
67000
1.5
66000
1
Crank Angle
[deg CA]
0.5
-180
0
Pcyl_sim
piT_sim
tb_speed_sim
INGAS 6 months Meeting, Prague, 25-26 May, 2009
180
360
540
65000
720
PCyl_meas
piT_meas
tb_speed_meas
21
INGAS INtegrated GAS Powertrain
CVUT-JBRC
GT-Power – Calibration
Engine model Calibration Full Load Curves, VTG margins, Lean Burn
min rack pos.
max rack pos.
INGAS 6 months Meeting, Prague, 25-26 May, 2009
22
INGAS INtegrated GAS Powertrain
CVUT-JBRC
GT-Power – Calibration
Engine model Calibration Full Load Curves, VTG margins,  = 1
cylinder
intake manifold
INGAS 6 months Meeting, Prague, 25-26 May, 2009
23
INGAS INtegrated GAS Powertrain
CVUT-JBRC
GT-Power Calibration
TPA Results 4102/120 Engine
INGAS 6 months Meeting, Prague, 25-26 May, 2009
24
INGAS INtegrated GAS Powertrain
CVUT-JBRC
Knock Description
• Various types of knock models
- chemical mechanism
- empirical induction-time correlations
  A p
t  i
• Autoignition occurs when

t 0
n
B
 exp  
T 
1
dt  1

Calls for:
– Empirical relations for induction time for
methane (Constants A and B )
– Definition of end-gas temperature is crucial
(Angle-Resolved Pattern of T )
INGAS 6 months Meeting, Prague, 25-26 May, 2009
25
INGAS INtegrated GAS Powertrain
Knock Description
CVUT-JBRC
CHEMKIN3 Calculation (GRI-Mech3.0 Reaction Mechanism - 53 components/325 reaction)
100000
 18508 
  8.13  10 p exp

 Tu 
4
10000
1
Ignition Delay [ms]
1000
100
p = 10 bar
p = 40 bar
p = 80bar
10
1
0.1
0.01
0.6
0.7
0.8
INGAS 6 months Meeting, Prague, 25-26 May, 2009
0.9
1 [1/K]
1000/T
1.1
1.2
1.3
1.4
26
INGAS INtegrated GAS Powertrain
CVUT-JBRC
Knock Description
End Gas Temperature Determination
Tcyl, Tu, Tb [K]
3000
Tcyl
Tu
Tb
2500
2000
1500
1000
500
0
-200
-100
0
100
200
Crank angle [deg CA]
Direct GT-Power Output
OBEH Output – Calculation Routine
Based on 1st Law of Thermodynamics
Uses Layer Thickness and its Heat
Conductivity
Simplified Two-Zone Mean
Temperature Model (Brunt, SAE
Paper 981 052):
11/ g
 p 

Tu  TSC 
 pSC 
g=1.338-610-5.T+1  10-8.T2
INGAS 6 months Meeting, Prague, 25-26 May, 2009
27
INGAS INtegrated GAS Powertrain
Knock Description
CVUT-JBRC
RPM 1300, Full Throttle, no EGR, Light Knock,
Fuel = Transit Natural Gas
Knock Onset [deg aTDC]
25
20
15
10
Knock Onset - Experiment
5
Knock Onset - Model before Calibration
Cycles Declared Knock-Free - Model before Calibration
Knock Onset - Calibrated Model
0
0
5
INGAS 6 months Meeting, Prague, 25-26 May, 2009
10
Cycle # [-]
15
20
25
28