Notes 9 - Waveguides part 6 coax
Download
Report
Transcript Notes 9 - Waveguides part 6 coax
ECE 5317-6351
Microwave Engineering
Fall 2011
Prof. David R. Jackson
Dept. of ECE
Notes 9
Waveguides Part 6:
Coaxial Cable
1
Coaxial Line: TEM Mode
y
To find the TEM mode fields
We need to solve
t2 0 ;
b
(a) V0
(b) 0
0
a
z
( ) C ln D
or ( ) C ln
0
, ,
0
@ a
a
V0 C ln
b
C
Zero volt potential reference location (0 = b).
x
V0
a
ln
b
2
Coaxial Line: TEM Mode (cont.)
y
Hence
( )
V0
b
ln
b
ln
a
b
a
Thus,
, ,
z
E x, y, z t x, y e
E x, y, z ˆ
H
V0
e
b
ln
a
zˆ E
1
jk z z
ˆ
e
x
jkz z
TEM : kz k c k jk
jk z z
c j
H ˆ
V0
e
b
ln
a
c
jk z z
3
Coaxial Line: TEM Mode (cont.)
y
B
B
A
A
b
ˆ E d
V ( z ) E dr ˆ E ˆ d ˆ d zdz
a
b
V0
e
b
a ln
a
V ( z ) V0 e jk z z
2
I ( z)
J
0
sz
d
jk z z
d
a
z
2
H ˆ d
0
2
V0
e
b
0
ln
a
2 V0
I ( z)
e jk z z
b
ln
a
b
jk z z
d
;
a b
, ,
x
V ( z)
Z0
I ( z)
Hence
b
Z0
ln
2 a
Note: This does not
account for
conductor loss.
4
Coaxial Line: TEM Mode (cont.)
y
Attenuation:
d c
b
a
Dielectric attenuation:
z
TEM : d k
, ,
x
1
P0 Re E H * zˆ dS
z 0
S 2
Conductor attenuation:
Pl (0)
c
2 P0
1
Re VI *
2
1
2
Re Z 0 I
2
1
2
P0 Z 0lossless I
2
(We remove all loss from the
dielectric in Z0lossless.)
5
Coaxial Line: TEM Mode (cont.)
Conductor attenuation:
Pl (0)
Rs
2
R
sa
2
Rsa
2
2
C1 C2
J sz
0
2
0
b
d
z 0
2
R
I sa
2
2
Js
y
2
R
ad sb
2
2
2
2
z
0
R
I
ad sb
2 a
2
2
a
J sz bd
2
0
I
bd
2 b
, ,
x
2
2
2 Rsb
1
ad
I
0 2 a
2
2
2
1
0 2 b bd
Rs
2
Rsa 1
2 Rsb 1
I
2 2 a
2 2 b
R
2 1 R
I sa sb
b
4 a
I
2
6
Coaxial Line: TEM Mode (cont.)
Conductor attenuation:
c
y
Pl (0)
2 P0
b
1
2
P0 Z 0lossless I
2
a
z
R
2 1 R
Pl (0) I sa sb
b
4 a
Hence we have
R
2 1 R
I sa sb
4
a
b
c
2
1
2 Z 0lossless I
2
, ,
Rs
x
2
or
1 1 Rsa Rsb
c lossless
Z
4
a
b
0
7
Coaxial Line: TEM Mode (cont.)
Let’s redo the calculation of conductor
attenuation using the Wheeler
incremental inductance formula.
y
b
Wheeler’s formula:
dZ 0lossless
Rs
c lossless lossless
2Z 0
d
a
z
, ,
The formula is applied for each conductor and the conductor
attenuation from each of the two conductors is then added.
x
Rs
2
lossless
In this formula, dl (for a given conductor) is the distance by which the
conducting boundary is receded away from the field region.
8
Coaxial Line: TEM Mode (cont.)
y
dZ
R
c losslesss lossless
2Z 0
d
lossless b
lossless
Z0
ln
2
a
lossless
0
dZ
Rsa
lossless lossless
2
Z
da
0
lossless
R
dZ
b
sb
0
c lossless lossless
2
Z
db
0
lossless
0
a
c
b
a
d da
d
lossless 1
Rsa
lossless lossless
2Z 0
2 a
lossless 1
Rsb
b
c lossless lossless
2
Z
2
b
0
, ,
x
Rs
db
Hence
a
c
z
2
so
lossless Rsa Rsb
1
c lossless lossless
b
2Z 0
2 a
or
1 1 Rsa Rsb
c lossless
Z
4
a
b
0
9
Coaxial Line: TEM Mode (cont.)
y
We can also calculate the fundamental per-unit-length
parameters of the coaxial line.
b
a
From previous calculations:
(Formulas
from Notes 1)
, ,
z
LZ
lossless
0
x
C / Z0lossless
G C tan
R c 2 Z 0lossless
where
Z
lossless
0
lossless b
ln
2
a
(Derived as a homework problem)
10
Coaxial Line: Higher-Order Modes
We look at the higher-order modes of a coaxial line.
y
The lowest mode is the TE11 mode.
y
b
a
z
, ,
x
x
Sketch of field lines for TE11 mode
11
Coaxial Line: Higher-Order Modes (cont.)
y
We look at the higher-order modes
of a coaxial line.
b
TEz:
a
H z 0 , k H z 0 , 0
2
2
c
kz2 k 2 kc2
z
, ,
H z , , z H z 0 , e
x
jkz z
The solution in cylindrical coordinates is:
J n ( kc )
H z0 ,
Yn (kc )
sin(n )
cos(n )
Note: The value n must be an integer to have unique fields.
12
Plot of Bessel Functions
1
1
J n (0) is finite
n=0
0.8
n=1
0.6
n=2
0.4
J 0( x)
Jn (x)
J 1( x)
0.2
J n( 2 x)
0
0.2
0.4
0.403 0.6
0
1
2
3
0
2
n
J n ( x) ~
cos x
x
2
4
4
5
x
6
7
8
9
10
10
x
13
Plot of Bessel Functions (cont.)
0.521
1
n=0
n=1
0
1
n=2
2
Yn (x)
Y0( x)
Y1( x)
Yn (0) is infinite
3
Yn( 2 x)
4
5
6
6.206
7
0
1
2
3
0
2
n
Yn ( x) ~
sin x
x
2 4
4
5
x
6
7
8
9
10
10
x
14
Coaxial Line: Higher-Order Modes (cont.)
y
We choose (somewhat arbitrarily) the cosine
function for the angle variation.
b
Wave traveling in +z direction:
Hz ,, z Hz 0 , e jkz z
a
z
, ,
x
H z 0 , cos(n) AJ n (kc ) BYn (kc )
The cosine choice corresponds to having the transverse electric field E being an even
function of, which is the field that would be excited by a probe located at = 0.
15
Coaxial Line: Higher-Order Modes (cont.)
y
Boundary Conditions:
E a, 0
E b, 0
b
j H z
E 2
kc
a
z
, ,
x
H z
0
a ,b
Hence
Note: The prime denotes derivative
with respect to the argument.
kc AJ n ( kc a ) BYn( kc a ) 0
kc AJ n ( kcb) BYn( kcb) 0
16
Coaxial Line: Higher-Order Modes (cont.)
y
AJ n (kca ) BYn(kca ) 0
AJ n (kcb) BYn(kcb) 0
b
a
In order for this homogenous system of
equations for the unknowns A and B to have
a non-trivial solution, we require the
determinant to be zero.
z
, ,
x
J n (kc a ) Yn(kca )
Det kc
0
J n (kcb) Yn(kcb)
Hence
J n (kca)Yn(kcb) J n (kcb)Yn(kca) 0
17
Coaxial Line: Higher-Order Modes (cont.)
y
J n (kca)Yn(kcb) J n (kcb)Yn(kca) 0
b
Denote
x kca
a
z
, ,
x
The we have
F ( x; n, b / a ) J n ( x )Yn x b / a J n x b / a Yn( x ) 0
For a given choice of n and a given value of b/a, we can
solve the above equation for x to find the zeros.
18
Coaxial Line: Higher-Order Modes (cont.)
A graph of the determinant reveals the zeros of the determinant.
p
xnp
F x; n, b / a
th
zero
Note: These values are not the same
as those of the circular waveguide,
although the same notation for the
zeros is being used.
xn3
xn1
x xnp
xn2
x
x kca
kca xnp
19
Coaxial Line: Higher-Order Modes (cont.)
Approximate solution:
2
kc a
1 b / a
n=1
Exact solution
Fig. 3.16 from the Pozar book.
20
Coaxial Line: Lossless Case
Wavenumber:
k z k 2 kc2
k
f fc
kc
2 f c kc
kc a
fc
2 a r 2
kc
c
c 2.99792458 108 [m/s]
TE11 mode:
1 1
fc
a r 1 b / a
c
21
Coaxial Line: Lossless Case (cont.)
fc
1 1
a r 1 b / a
c
At the cutoff frequency, the wavelength
(in the dielectric) is
d
Compare with the
cutoff frequency
condition of the
TE10 mode of RWG:
c
f r
a 1 b / a
so
a
d a b
d
2
b
a
or
2 a b
d
/2
2b
22
Example
Page 129 of the Pozar book:
RG 142 coax:
a 0.035 inches 8.89 10 4 [m]
b 0.116 inches 29.46 10 4 [m]
r 2.2
b / a 3.31
1 1
fc
1
b
/
a
a r
c
f c 16.8 [GHz]
23