notes13 2317 - University of Houston
Download
Report
Transcript notes13 2317 - University of Houston
ECE 2317
Applied Electricity and Magnetism
Prof. D. Wilton
ECE Dept.
Notes 13
Notes prepared by the EM group,
University of Houston.
Divergence -- Physical Concept
Start by considering a sphere of uniform volume charge density
The electric field is calculated using Gauss's law:
r < a:
z
D n dS Q
v = v0
encl
S
y
r
x
a
4 3
4 r Dr v 0 r
3
r
C/m 2
Dr v 0
3
2
Divergence -- Physical Concept (cont.)
r > a:
4 3
4 r Dr v 0 a
3
v 0 a3
2
Dr
C/m
2
3r
2
z
v = v0
y
a
r
x
Divergence -- Physical Concept (cont.)
Flux through a spherical surface:
D nˆ dS 4 r 2 Dr
S
Dr
Dr
v 0 r
3
v 0 a 3
3r
2
C/m 2
(r < a)
C/m2
(r > a)
4 3
r v 0
3
(r < a)
4 3
a v 0
3
(r > a)
Divergence -- Physical Concept (cont.)
Observation:
More flux lines are added as the radius increases
(as long as we stay inside the charge region).
D n dS 0
S
The net flux out of a
small volume V inside
the charge region is not
zero.
V
S
D n dS 0
S
Divergence is a mathematical way of describing this.
Gauss’s Law -- Differential Form
Definition of divergence:
1
div D lim
lim
V 0 V
V 0 V
D nˆ dS
S
V
Note: the limit exists independent of the shape of the volume (proven later).
Gauss’s Law -- Differential Form
Apply divergence definition to small volume inside a region of charge
1
div D lim
V 0 V
V
D n dS Q
D n dS
S
encl
v r V
S
v (r)
Qencl
div D r lim
V 0
V
v r
Gauss’s Law -- Differential Form (cont.)
Alternatively,
Qencl
div D r lim
lim
V 0 V
V 0
V
1
lim
v dV
V 0 V V
lim vavg
V 0
v r
div D r v r
The electric Gauss law: This is one of Maxwell’s equations.
Example
z
v = v0
V
y
Choose V to be small sphere of radius r:
r
a
x
4 3
V r
3
Verify that the differential form of Gauss’s law gives
the correct result at the origin for the example of a
sphere of uniform volume charge density.
1
div D lim
V 0 V
D n dS
S
v 0 r
3
4
r
2
2
S D n dS Dr 4 r 3 4 r v0 3
v 0 4 r 3
div D lim
lim v 0 v 0
V 0 4
3
V 0
r3
3
1
Calculation of Divergence
z
1
V 0 x y z
div D lim
(0,0,0)
z
y
x
y
x
Assume point of interest is at the
origin for simplicity.
The integrals over the 6 faces are
approximated by “sampling” the
integrand at the centers of the
faces.
D n dS
S
x
D
n
dS
D
,
0,
0
x
y z
S
2
x
Dx , 0, 0 y z
2
y
Dy 0, , 0 x z
2
y
Dy 0,
, 0 x z
2
z
Dz 0, 0, x y
2
z
Dz 0, 0, x y
2
Calculation of Divergence (cont.)
1
V 0 x y z
div D lim
x
D
n
dS
D
,
0,
0
x
y z
S
2
x
Dx , 0, 0 y z
2
y
Dy 0, , 0 x z
2
y
Dy 0,
, 0 x z
2
z
Dz 0, 0, x y
2
z
Dz 0, 0, x y
2
D n dS
S
1
x y z
D n dS
S
x
x
Dx ,0,0 Dx ,0,0
2
2
x
y
y
D y 0, ,0 D y 0,
,0
2
2
y
z
z
Dz 0,0, Dz 0,0,
2
2
z
Calculation of Divergence (cont.)
div D lim
V 0
x
x
Dx , 0, 0 Dx , 0, 0
2
2
x
y
y
Dy 0, , 0 Dy 0,
,0
2
2
y
z
z
Dz 0, 0, Dz 0, 0,
2
2
z
For arbitrary origin, just add x,y,z to
coordinate quantities in parentheses!
Hence
Dx Dy Dz
div D
x
y
z
Calculation of Divergence (cont.)
Dx Dy Dz
div D
x
y
z
1
div D lim
V 0 V
D n dS
S
The divergence of a vector is its “flux per unit volume”
“del operator”
x y z
x
y
z
The “del” operator is a vector
differential operator
Examples of derivative operators:
d
:
dx
d
vector x
:
dx
scalar
vector->scalar
vector->vector
d
sin x cos x
scalar -> scalar
dx
d
x sin x x cos x scalar -> vector
(1)
dx
d
d
x x sin x x x sin x cos x (2)
dx
dx
d
d
x y sin x zˆ sin x zˆ cos x (3)
dx
dx
Example
V x, y, z x sin x y 3 y z xy
Find V
V x, y, z x y z x sin x y 3 y z xy
y
z
x
V x, y, z sin x 3 y xy
y
z
x
V x, y, z cos x 3 0 3 cos x
“del operator” (cont.)
Now consider:
D x y z xDx yDy zDz
y
z
x
Dy
Dx
Dz
xx
y y
zz
x
y
z
Hence
so
Dx Dy Dz
D
x
y
z
D div D
Note: No unit vectors appear!
Gauss's law :
D v
Summary of Divergence Formulas
Rectangular:
Dx Dy Dz
D
x
y
z
Note the dot after the del
Cylindrical:
1
1 D Dz
D
D
z
operator is important; any
symbol following it tells
us how to use and read it:
"gradient"
"divergence"
"curl"
Spherical:
1 2
1
1 D
D 2 r Dr
D sin
r r
r sin
r sin
The divergence of a vector is its “flux per unit volume”
Example
Evaluate the divergence of the electric flux vector inside and outside a
sphere of uniform volume charge density, and verify that the answer is
what is expected from the electric Gauss law.
r<a:
z
v =
v0
y
r
x
a
v 0 r
D r
3
1
D 2
r
1
2
r
D v 0
2
r Dr
r
2 v 0 r
r
r 3
1
2
r
v0
r2
Note: This agrees with the electric Gauss law.
Example (cont.)
r>a:
z
v =
v0
y
x
a
v 0 a 3
D r
2
3r
1 2 v 0 a3
D 2 r 2
r r 3r
1 v 0 a 3
2
0
r r 3
D 0
Note: This agrees with the electric Gauss law.
Maxwell’s Equations
B
E
t
D
H J
t
D v
B 0
Faraday’s law
Ampere’s law
electric Gauss law
magnetic Gauss law
Divergence Theorem
S
V
A dV A n dS
V
S
In words, for a vector
A A( x, y, z ) an arbitrary
vector function of position
A:
The volume integral of “flux per unit volume” equals the total flux!
Divergence Theorem (cont.)
Proof:
V
N
A dV lim A
V
V 0
n 1
rn is the center of cube n
rn
V
Divergence Theorem (cont.)
From the definition of divergence:
1
V 0 V
Ar lim
n
1
V
A n dS
Sn
A n dS
S n
Hence:
N
AdV lim V A
V
V 0
n 1
N
rn
lim
V 0
n 1 Sn
A n dS
Divergence Theorem (cont.)
N
AdV lim
V
V 0
V
A n dS
n 1 Sn
Consider two adjacent cubes:
A n
1
n2
n1
2
Hence: the surface integral cancels on all INTERIOR faces.
is opposite on
the two faces
Divergence Theorem (cont.)
n
N
A dr lim
V 0
V
V
n
lim
V 0
Hence:
A dV lim
V 0
V
Therefore:
A n dS
outside Sn
faces
A dV A n dS
V
A n dS
n 1 Sn
A n dS
outside Sn
faces
A n dS
S
(proof complete)
S
The vol. integral of the “flux per unit volume” is the “flux”
Example
Given:
z
A x 3x
Verify the divergence theorem using the box.
A n dS x x 33 2 x x 3 0 2
S
18
1 [m]
y
3 [m]
2 [m]
x
Ax Ay Az
A
x
y
z
3x 3
x
A dV 3 dV 3V 3 1 2 3 18
V
V
Validity of Divergence Definition
1
div D lim
V 0 V
Is this limit
independent of the
shape of the volume?
S
S
nˆ
V
From the divergence
theorem:
D n dS
r
1
div D lim
V 0 V
1
lim
V 0 V
D dV
V
D
r
V D r
Hence, the limit is the same regardless of the shape of the limiting volume.
Gauss’s Law (Conversion between forms)
D n dS Q
encl
V
S
Divergence theorem:
Qencl
D dV D n dS
V
This is valid for any volume,
so let V V (a small
volume inside the original
volume)
v
V 0
Hence:
S
S
Qencl v dV
V
D dV
V
V
v
dV
D V v V
D v
v
Gauss’s Law (Summary of two forms)
D n dS Q
encl
Integral (volume) form of Gauss’s law
S
Divergence
definition
Divergence theorem
D v
Differential (point) form of Gauss’s law