A Pyramid WFS For LBT AGW Unit - INAF

Download Report

Transcript A Pyramid WFS For LBT AGW Unit - INAF

A First-Light AO system for
LBT AGW Unit: a conceptual design
S. Esposito, M. Accardo, C. Baffa, V. Biliotti, G. Brusa, M. Carbillet, D. Ferruzzi ,
L. Fini, I. Foppiani, A. Puglisi, P. Stefanini, R. Ragazzoni, P. Ranfagni, A. Riccardi,
A. Tozzi, C. Verinaud, R. Biasi D. Gallieni, W. Seifert, J.Storm
Tucson, December 9th 2001
Presented by: S. Esposito
1
AO system for LBT AGW: Summary
AO System Objectives
The DM, Adaptive Secondary (LBT672)
The WFS unit, pyramid sensor
Real-Time loop control
AO System Integration and Testing
Time schedule, costs and manpower
2
System main Objectives
Very high correction with bright reference sources
• High number of actuators 672
• High pupil sampling 32x32 (CCD39), 60x60 (CCD60)
Maximized Sky Coverage
• High sensitivity of Pyramid Sensor
• High transmittance of the WFS optics
• no RON with CCD60
3
LBT AO System: DM
• Adaptive secondary for LBT
MMT Adaptive
Secondary
• 672 actuators
• Tip-tilt and HO correction
• Wavefront reconstructor on-board
911mm
VANES
22mm x 14mm
4
A Moveable WFS for the AGW unit 20
th
October 2001
• Reduce size, number and
cost of optical elements
• High optical throughput
• Minimize NCP aberrations
• Reduce system flexure
• Reduce turbulence WFS
optical path
• Easy assembly and testing
the WFS unit
• Same HO & TT reference
star
5
LBT AO System: WFSs
Instrument entrance
window 15o
LGS (Sodium) WFS HO
small 120x100x100 mm,
200mm refocuseable unit
F15 beam from LBT
derotator unit
NGS WFS HO&TT
small 300x400mm,moveable unit
acquiring +/- 60 arcsec FOV
Instrument flange
6
A Moveable NGS WFS for the AGW
F15 beam from LBT
Instrument entrance
window 15o
NGS WFS HO&TT
small 300x400mm moveable unit
+/- 60 arcsec FOV
7
derotator unit
Board misalignment
Board translation
Spot displacements on
Pyramid vertex: 0.4mas/deg,
J band FWHM 30mas
Linear stages flexures: 15 mm traslation, 15 arcsec tilt
Board tilt
Spot displacements on Pyramid
vertex: 0.1 mm, 0.05mas
Pupil displacements onWFS CCD
0.5 mm/20 deg (24 mm/pixel)
8
Pyramid Optical set-up I
Optical set-up
9
The Pyramid Operating Principle
Telescope
pupil
Image plane
Glass
Pyramid
Pupil reimager
4
PSF
3
Pupil plane
DETECTOR
1
2
y
x
pixels used for slope computation
10
at the correspondin pupil subarea
A Moveable WFS for
the AGW Unit II
HO beam
Incoming f15 beam
from LBT focal plane
TT beam
Telecentric lens
pyramids
Field Viewer
beam
ADC optics
Filter wheel
CCD 39/60
Piezo steering mirror
Field
viewer
PI
• Board dimension 400x320
mm including detectors
• 100x100x100 CCD head
• 80x100x100 STRAP11unit
Another view........
Strap
unit
CCD39
Field
viewer
PI
Folding
mirrors
Filter wheels
12
NGS High Order Channel (EEV39)
NOT TO SCALE
Pupils on CCD 60 (128x128)
Camera doublet f = 67 mm
Focal plane to pupil plane distance 135mm
Pupil diameter: 1440 mm (60 pixels)
13
NGS HO PSF: Board On-AxisI
board on axis, Strehl ratio at the focal plane (f/45)
vs. FOV
ZENIT
angle (°)
-1
-0.5
0
0.5
1
0
0.962
0.966
0.967
0.966
0.962
35
0.919
0.927
0.934
0.938
0.941
69
0.913
0.923
0.934
0.945
0.953
14
NGS HO PSF: Board Off-Axis
Board 1 arcmin off axis, Strehl ratio at the focal plane
(f/45) Vs. FOV
ZENIT
angle (°)
-1
-0.5
0
0.5
1
0
0.798
0.799
0.796
0.791
0.787
35
0.706
0.709
0.711
0.712
0.711
69
0.725
0.742
0.756
0.768
0.778
LBT only (f15)
LBT + board (f45)
15
The NGS HO Pyramid design I
Light direction
1 arcsec off-axis beam
10 mm
EEV39 sensitive surface
v u
6 pixel
144 micron
85 pixel
2057 micron
32 pixel
764 micron
•Vertex u 30°, SK10
Pyramid edges
•Vertex v 28.2°, SSK2
orientation
•FOV +/- 1 arcsec
Y
•Energy loss on edges < 10 %
•Chromatism 0.9-3 mm at 0-69 deg
wl range (0.6 – 1.0 mm)
X
16
NGS Tip-Tilt Channel
NOT TO SCALE
17
NGS Tip-Tilt beam II
2 arcsec / 3.6 mm
123 mm
Strap Unit
• APD sensitive area 200 mm
• APD separation adjustable
• around 2.8 mm
• Pyramid angle 30 deg (SSK2)
• Chromatism about 30 mm
2.55mm
18
NGS Field Viewer beam
CCD65 camera
NOT TO SCALE
• 3L CCD 65
• Sensible area 11.5x8.6 mm
• FOV 6.4x4.8 arcsec
• Pixel size 20x30 mm
19
• R band not well sampled
LGS High Order Channel
Sodium beacon
764 mm, (32 pixel)
NOT TO SCALE
Telecentric lens
for NGS board
20
LGS High Order Channel
LBT NGS
focal plane
• Single pyramid (Silica)
• Pyramid angle 7 deg
• No edge problems
LBT LGS
Focal plane
15.9mm
12.8mm
1800 mm
764 mm
58mm
21
NGS HO Channel throughput
Air/Glass trasmission
Internal Glass Trasmission
ADC
C04-64
BAM23
6.4 mm
6.4 mm
0.993
1
Triplet
FK51
KZFSN5
F2
1.71 mm
1.71 mm
1.71 mm
0.9983
0.9989
0.9989
0.996
Beam
splitter
BK7
0.7 mm
1
1
Telecentr
ic lens
F_Silica
Doublet
camera
C04-64
BAM23
2.85 mm
3.2 mm
0.995
1
0.995
Pyramid
SK10
SSK2
5.84 mm
5.55 mm
0.9975
0.9985
0.996
Total transmission
5 mm
1
0.993
ADC
Triplet
1
Beam
splitter
Coating (812 nm Balzer Supertriolin
0.7%)
4 surfaces glass0.038
0.962
air
2 surfaces glass0.014
0.986
air
2 surfaces
0.05
0.95
glass-air
Telecentr 2 surfaces glassic lens
air
0.014
0.986
Doublet
camera
2 surfaces glassair
0.014
0.986
Pyramid
2 surfaces glass0.014
air
Balzer Silflex-VIS
0.986
0.98
Pyramid Edge losses 10 %
TOTAL TRASMISSION 0.83 * 0.9 = 75 %
Mirror1
0.98
Mirror2
0.98
Total NGS HO transmission
0.846
22
WFSs on-board Opto-mechanics
HO
HO CCD
FW2
• hole: beam translation (10deg) => 0.5mm
pupil disp. (1/20 relative disp.)
FW CCD
FW1PI
FW1
• tilt: +/- 9’ => +/- 2mm PSF disp.
• hole: focus disp. 1mm
• hole: beam traslation (20deg) => 1mm
pupil disp. (1/8 relative disp.)
• PI mirror, as FW1
FW2
Folding
mirrors
Filter wheels
HO FM
• tilt: +/- 1deg => +/- 1 mm PSF disp.
• tilt: 1’ => pupil disp. of 8.7 mm
TT FM
• tilt: +/- 1deg => < 2 mm PSF disp.
• tilt: 1’ => pupil disp. of 7 mm
• hole: beam traslation, (20deg) => 1mm
• pupil disp. (1/8 relative disp.)
23
Board positioning for guide star acquisition
Sodium laser channel
And WFS
Board focusing
Ref. Source 24
acquisition
LBT AO System: RT operation & HW
CCD39/50/60
CCD
APDs' TIP-TILT
SENSOR
High speed fiber link
Reconstruction:
(32x32x2)x672x2op:
27 ms WF rec.
107 Gflop/s (336DSP)
64x64x16bit 1ms
1Kframe/s
(65Mbit/s)
Controller
STRAP RS 232
UNIT
96 PIO Slope
computer
32x32x2x32bit
27 ms trasm. time
2.4 Gbit/s fiber link
TCS
Diag. comp
16op/sensing subap.
32x32 subaperture
50 ms comp. time
DSP op. rate 320 Mflops/s25
First light and MMT test
LBT 1st light
MMT test
CCD controller
and SLC intf.
65 Mb/s
16 Mb/s
SLC
32 Mflops/s
8 Mflops/s
SLC intf. To
LBT672
65 Mb/s
11 Mb/s
2.4Gb/s
WFC
5 Gflops/s
230 Mflops/s
2.0 ms int.
300 Mflops/s x 336
DSP, 107Gflops/s
LBT 1st light:
32x32 sub. (16bit/pixel)
1Kframe/s (CCD60)
32x32x2 slopes (32bit/slope)
2048x672 REC MATRIX
HW
Four 16bit parallel
port
300 Mflops/s
per BCCU
MMT test:
16x16 sub. (16bit/pixel)
500frames/s (CCD39)
16x16x2 slopes (32bit/slope)
512x336 REC MATRIX
26
LBT AO System: test facility I
LBT672
15m
Optical bench bolted to the tube
27
LBT AO System: test facility II
M2
Test beam
F1
Reflecting
optics
WFS unit
Test interferometer
“Instrument” 15o
tilted entrance window
Test Interferometer focus
28
LBT AO System: schedule
CCD60 FASTI controller design and test LLLCCD
.
is s
Co
mm
Shipping
Installation
2001
2002
2003
2004
J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J
act design
LBT672
Adaptive Secondary
procurement
P36' test P45 test Closed loop
inst&test CL WFS
Design phase
assemb. P45+WFS+RTR
Tower +LBT672
Wavefront sensor
MMTtest
OptoMecc Procur. and test
inst.
RT software
System Software
Debugging
Diagnostic Design phase 1 Design phase 2
Coding phase 1
Coding phase 2
Final controller test BI L3CCD
Test tower
29
First Light AO
Preliminary cost estimate
First Light AO requires work on various sub programs:
AO WFS
•Design
•Prototyping
•Lab Test
•P45 Test
•MMT Test?
•Full Sys test
•Installation
LLLCCD
•Det. Proc.
•“Fasti” test
•LLL Controller
Prototype
•LLL Controller
LBT 672
•Test Tower
•P36’ test
•P45 test
•LBT 672 constr.
•LBT 672 test
•Full Sys test
•Installation
AO Software
•Basic loop SW
•Housekeeping
•Diagnostics
•Self-optimization
•User interface
•TCS interface
•Installation
30
AO System Manpower
Personnel
Name
Type and Role
WFS1
WFS2
univ. deg PHD Project role % of time period total % of time period total
months months
months months
WFS,Full System Test, tel. Integ
Simone Esposito
Phys
Y
Project head, System70
26 18,2
30
12
3,6
Piero Ranfagni*
Nat. Sciences
Program management
10
26
2,6
10
12
1,2
Andrea Tozzi
Phys
Optical Design, Optical
50testing26
13
30
12
3,6
Debora Ferruzzi
Phys
Optical Design
70
4
2,8
20
12
2,4
Matteo Accardo
Opto-mechanics
40
10
4
20
12
2,4
Marcel Carbillet
Phys
Y
AO algorithms and Simulations
40
20
8
0
12
0
48,6
13,2
SoftWare,Full Sys. Test, tel. Integ.
Luca Fini
El-nics Eng.
Head of SW development
70
25 17,5
0
0
Gavryusev Vladimir
Phys
y
SW
50
25 12,5
0
0
Alfio Puglisi
SW
50
25 12,5
0
0
Piero Ranfagni **
Nat. Sciences
SW
30
25
7,5
0
0
50
0
Full Sys. Test, tel. Integ
Armando Riccardi
Phys
Head of AS development
60
6
3,6
40
6
2,4
Simone Busoni
Phys
y
sys. test
40
6
2,4
30
6
1,8
Paolo Stefanini
Mechanics, thermal contr.
20
4
0,8
0
4
0
Valdemaro Biliotti*
Electronics
20
4
0,8
0
4
0
7,6
4,2
Unit 1
106,2 Man-monthUnit 2
31
17,4
L3 CCD Manpower
Arcetri/Bologna Staff involved in LLLCCD controller (Contr.) development and system test (ST)
Carlo Baffa
Valemaro Biliotti**
Elisabetta Giani
Alessio Checcucci
Mauro Sozzi
% of time
1/1/02-31/3/03
50
Head of Controller develop.
60
Controller electr. Low level SW
30
SW
10
Electronics, testing
30
Electronics, develp. Assembly
Italo Foppiani
Giovanni Bregoli
Giuseppe Cosentino
Head of Detector lab
SW
Electronics
Name
Project role
80
50
50
7,5
9
4,5
1,5
4,5
0
12
7,5
7,5
54 months
32
WFS Hardware cost: first unit
Hardware (one unit)
N/unit
CCD39 (or LLLCCD60)+ Controller
LLLCCD60 + controller
STRAP unit + controller
PI modulator+ controller
Optical viewer +controller
Pyramids (HO +TT)
optics
board mechanics (design +construct)
Lab motion controllers
Global motion XYZ stages
Slope computer and communications
Subtotal
Italian VAT? (20%)
Total HW cost (with VAT)
1
Cost to LBT
k$
note
30 ok
1
1
1
2
40 ok
10 ok
3
1
15 ok
15 ?
125
25 !!!!!
150
5 ok
5?
20 ?
33
Cost Summary
Wavefront Sensor + SW
• First Unit
• Second unit
Total WFS
362 k$
185 k$
547 k$
Adaptive secondary
136 K$
683 k$ LBTC cost
270k$
185k$
455k$
455 k$ Arcetri/Bologna
cost
Not charged to LBTC:
LLLCCD DEV
Test Tower
Total
34
Work in progress……
Optical design optimization & tolerances
Mechanical tolerances
System performance simulations
Rerotator, optical vs. software
other................
35