Linear Programming (Optimization)

Download Report

Transcript Linear Programming (Optimization)

System of Linear Inequalities
๏ฑ The solution set of LP is described by ๐ด๐‘ฅ โ‰ค ๐‘.
Gauss showed how to solve a system of linear equations (๐ด๐‘ฅ = ๐‘).
The properties of the system of linear inequalities were not well known, but its
importance has grown since the advent of LP (and other optimization areas
such as IP).
๏ฑ We consider a hierarchy of the sets which can be generated by applying various
operations to a set of vectors.
๏ƒ˜Linear combination (subspace)
๏ƒ˜Linear combination with the sum of the weights being equal to 1 (affine space)
๏ƒ˜Nonnegative linear combination (cone)
๏ƒ˜Nonnegative linear combination with the sum of the weights being equal to 1
(convex hull)
๏ƒ˜Linear combination + nonnegative linear combination + convex combination
(polyhedron)
Linear Programming 2012
1
๏ฑ Questions:
๏ƒ˜Are there any other representations describing the same set?
๏ƒ˜How can we identify the different representation given a representation of a set?
๏ƒ˜Which are the most important elements in a representation to describe the set and
which elements are redundant or unnecessary?
๏ƒ˜Given an instance of a representation, does it have a feasible solution or not?
๏ƒ˜How can we verify that it has a feasible solution or not?
Linear Programming 2012
2
๏ฑ References:
Convexity and Optimization in Finite Dimensions 1, Josef Stoer and
Christoph Witzgall, 1970, Springer-Verlag.
Convex Analysis, R. Tyrrell Rockafellar, 1970, Princeton University Press.
Integer and Combinatorial Optimization, George L. Nemhauser, Laurence A.
Wolsey, 1988, Wiley.
Theory of Linear and Integer Programming, Alexander Schrijver, 1986,
Wiley.
Linear Programming 2012
3
๏ฑ Subspaces of ๐‘…๐‘› : the set closed under addition of vectors and scalar
multiplication
๐‘ฅ, ๐‘ฆ โˆˆ ๐ด โŠ† ๐‘…๐‘› , ๐œ† โˆˆ ๐‘… ๏ƒž (๐‘ฅ + ๐œ†๐‘ฆ) โˆˆ ๐ด
which is equivalent to (HW)
๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘š โˆˆ ๐ด โŠ† ๐‘…๐‘› , ๐œ†1 , โ€ฆ , ๐œ†๐‘š โˆˆ ๐‘…
๏ƒž
๐‘š
๐‘–
๐‘–=1 ๐œ†๐‘– ๐‘Ž
โˆˆ๐ด
Subspace is the set closed under linear combination.
ex) ๐ด: ๐‘š × ๐‘› matrix. {๐‘ฅ: ๐ด๐‘ฅ = 0}.
Can all subspaces be expressed in this form?
๏ฑ Affine spaces : closed under linear combination with sum of weights = 1
( affine combination)
๐‘ฅ, ๐‘ฆ โˆˆ ๐ฟ โŠ† ๐‘…๐‘› , ๐œ† โˆˆ ๐‘… ๏ƒž 1 โˆ’ ๐œ† ๐‘ฅ + ๐œ†๐‘ฆ = ๐‘ฅ + ๐œ†(๐‘ฆ โˆ’ ๐‘ฅ) โˆˆ ๐ฟ
which is equivalent to
๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘š โˆˆ ๐ฟ โŠ† ๐‘…๐‘› , ๐œ†1 , โ€ฆ , ๐œ†๐‘š โˆˆ ๐‘…,
๐‘š
๐‘–=1 ๐œ†๐‘–
=1
๏ƒž
๐‘š
๐‘–
๐‘–=1 ๐œ†๐‘– ๐‘Ž
โˆˆ๐ฟ
ex) {๐‘ฅ: ๐ด๐‘ฅ = ๐‘}.
Linear Programming 2012
4
๏ฑ (convex) Cones : closed under nonnegative scalar multiplication
๐‘ฅ โˆˆ ๐พ โŠ† ๐‘…๐‘› , ๐œ† โ‰ฅ 0 (โˆˆ ๐‘…+ ) ๏ƒž๐œ†๐‘ฅ โˆˆ ๐พ
Here, we are only interested in convex cones, then the definition is
equivalent to
๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘š โˆˆ ๐พ โŠ† ๐‘…๐‘› , ๐œ†1 , โ€ฆ , ๐œ†๐‘š โˆˆ ๐‘…+
๏ƒž
๐‘š
๐‘–
๐œ†
๐‘Ž
๐‘–
๐‘–=1
โˆˆ๐พ
i.e. closed under nonnegative linear combination
ex) {๐‘ฅ: ๐ด๐‘ฅ โ‰ค 0}.
๏ฑ Convex sets : closed under nonnegative linear combinations with sum of the
weights = 1 (convex combination)
๐‘ฅ, ๐‘ฆ โˆˆ ๐‘† โŠ† ๐‘…๐‘› , 0 โ‰ค ๐œ† โ‰ค 1 ๏ƒž๐œ†๐‘ฅ + 1 โˆ’ ๐œ† ๐‘ฆ = ๐‘ฆ + ๐œ†(๐‘ฅ โˆ’ ๐‘ฆ) โˆˆ ๐‘†
which is equivalent to
๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘š โˆˆ ๐‘† โŠ† ๐‘…๐‘› , ๐œ†1 , โ€ฆ , ๐œ†๐‘š โˆˆ ๐‘…+ ,
Linear Programming 2012
๐‘š
๐‘–=1 ๐œ†๐‘–
=1 ๏ƒž
๐‘š
๐‘–
๐‘–=1 ๐œ†๐‘– ๐‘Ž
โˆˆ๐‘†
5
๏ฑ Polyhedron : ๐‘ƒ = {๐‘ฅ: ๐ด๐‘ฅ โ‰ค ๐‘}, i.e. the set of points which satisfy a finite
number of linear inequalities.
Later, we will show that it can be expressed as a ( linear combination of points
+ nonnegative linear combination of points + convex combination of points )
Linear Programming 2012
6
Convex Sets
๏ฑ Def: The convex hull of a set ๐‘† is the set of all points that are convex
combinations of points in ๐‘†, i.e.
conv(๐‘†) = {๐‘ฅ: ๐‘ฅ =
๐‘˜
๐‘–
๐‘–=1 ๐œ†๐‘– ๐‘ฅ , ๐‘˜
โ‰ฅ 1, ๐‘ฅ 1 , โ€ฆ , ๐‘ฅ ๐‘˜ โˆˆ ๐‘†, ๐œ†1 , โ€ฆ , ๐œ†๐‘˜ โ‰ฅ 0,
๐‘˜
๐‘–=1 ๐œ†๐‘–
= 1}
๏ฑ Picture: points that can be obtained as ๐œ†1 ๐‘ฅ + ๐œ†2 ๐‘ฆ + ๐œ†3 ๐‘ง, ๐œ†๐‘– โ‰ฅ
0 ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘–, 3๐‘–=1 ๐œ†๐‘– = 1
๐œ†1
๐œ†1 +๐œ†2
๐œ†1 ๐‘ฅ + ๐œ†2 ๐‘ฆ + ๐œ†3 ๐‘ง = ๐œ†1 + ๐œ†2
๐‘ฅ+
๐œ†2
๐‘ฆ
๐œ†1 +๐œ†2
+ ๐œ†3 ๐‘ง
(assuming ๐œ†1 + ๐œ†2 โ‰  0)
๐‘ง
๐‘ฅ
๐‘ฆ
Linear Programming 2012
7
๏ฑ Thm :
(a) The intersection of convex sets is convex
(b) Every polyhedron is a convex set
Pf) See the pf. of Theorem 2.1 in text p44.
Note that Theorem 2.1 (c) gives a proof for the equivalence of the original
definition of convex sets and extended definition.
See also the definitions of hyperplane ({๐‘ฅ: ๐‘Žโ€ฒ ๐‘ฅ = ๐‘}) and halfspace ({๐‘ฅ: ๐‘Žโ€ฒ ๐‘ฅ โ‰ฅ ๐‘})
Linear Programming 2012
8
Subspaces
๏ฑ Any set ๐ด โŠ† ๐‘…๐‘› generates a subspace {๐œ†1 ๐‘Ž1 + โ‹ฏ + ๐œ†๐‘˜ ๐‘Ž๐‘˜ : ๐‘˜ โ‰ฅ 1, ๐œ†1 , โ€ฆ , ๐œ†๐‘˜ โˆˆ ๐‘…,
๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘˜ โˆˆ ๐ด}
This is called the linear span of ๐ด โ€“ notation ๐‘†(๐ด) (inside description)
Linear hull of ๐ด : intersection of all subspaces containing ๐ด (outside
description).
These are the same for any ๐ด โŠ† ๐‘…๐‘› .
๏ฑ Linear dependence of vectors in ๐ด = {๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘˜ } โŠ† ๐‘…๐‘› :
{๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘˜ } are linearly dependent if โˆƒ ๐‘Ž๐‘– โˆˆ ๐ด such that ๐‘Ž๐‘– can be expressed as
a linear combination of the other vectors in ๐ด, i.e. can write ๐‘Ž๐‘– = ๐‘—โ‰ ๐‘– ๐œ†๐‘— ๐‘Ž ๐‘— .
Otherwise, they are linearly independent.
๏ฑ Equivalently, {๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘˜ } linearly dependent when โˆƒ ๐œ†โ€ฒ๐‘– ๐‘  not all = 0 such that
๐‘˜
๐‘–
๐‘–=1 ๐œ†๐‘– ๐‘Ž = 0.
Linearly independent if
Linear Programming 2012
๐‘˜
๐‘–
๐‘–=1 ๐œ†๐‘– ๐‘Ž
= 0 implies ๐œ†๐‘– = 0 for all ๐‘–.
9
๏ฑ Prop: Let ๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘š โˆˆ ๐‘…๐‘› are linearly independent and ๐‘Ž0 =
๐‘š
๐‘–
๐‘–=1 ๐œ†๐‘– ๐‘Ž
.
Then (1) all ๐œ†๐‘– unique and (2) ๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘š โˆช {๐‘Ž0 } โˆ– {๐‘Ž๐‘˜ } are linearly
independent if and only if ๐œ†๐‘˜ โ‰  0.
Pf) HW later.
๏ฑ Prop: If ๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘š โˆˆ ๐‘…๐‘› are linearly independent, then ๐‘š โ‰ค ๐‘›.
Pf) Note that unit vectors ๐‘’1 , ๐‘’2 , โ€ฆ , ๐‘’๐‘› are linearly independent and
๐‘† ๐‘’1 , โ€ฆ , ๐‘’๐‘› = ๐‘…๐‘› .
Use ๐‘’1 , ๐‘’2 , โ€ฆ , ๐‘’๐‘› and following โ€œbasis replacement algorithmโ€
set ๐‘š โ† ๐‘š and sequentially, for ๐‘˜ = 1, โ€ฆ , ๐‘›, consider
๐‘˜=0
(*)
๐‘˜ =๐‘˜+1
Is ๐‘’๐‘˜ โˆˆ ๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘š ? If yes, go to (*), else continue.
Is ๐‘’๐‘˜ โˆ‰ ๐‘† ๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘š ? If yes, set ๐‘Ž๐‘š+1 โ† ๐‘’๐‘˜ , ๐‘š โ† ๐‘š + 1 and go to (*)
Then ๐‘’๐‘˜ โˆ‰ {๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘š }, but ๐‘’๐‘˜ โˆˆ ๐‘† ๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘š .
Linear Programming 2012
10
(continued)
So ๐‘’๐‘˜ =
๐‘š
๐‘–
๐‘–=1 ๐œ†๐‘– ๐‘Ž
and ๐œ†๐‘– โ‰  0 for some ๐‘Ž๐‘– which is not a unit vector,
say ๐‘Ž ๐‘— .
Substitute ๐‘Ž ๐‘— with ๐‘’๐‘˜ and go to (*).
Note that throughout the procedure, the set {๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘š } remain linearly
independent and when done ๐‘’๐‘˜ โˆˆ {๐‘Ž1 , โ€ฆ , ๐‘Ž๐‘š } for all ๐‘˜. Hence at end, ๐‘š =
๐‘›. Thus ๐‘š โ‰ค ๐‘š = ๐‘›.
๏‚œ
๏ฑ Def: For ๐ด โŠ† ๐‘…๐‘› , a basis of ๐ด is a linearly independent subset of vectors in ๐ด
which generates all of ๐ด, i.e. minimal generating set in ๐ด (maximal
independent set in ๐ด).
Linear Programming 2012
11
๏ฑ Thm : (Finite Basis Theorem)
Any subset ๐ด โŠ† ๐‘…๐‘› has a finite basis. Furthermore, all bases of ๐ด have the
same number of elements. (basis equicardinality property )
Pf) First statement follows from the previous Prop.
To see the 2nd statement, suppose ๐ต, ๐ถ are bases of ๐ด and ๐ต โ‰  ๐ถ.
Note that ๐ต โˆ– ๐ถ โ‰  โˆ…. Otherwise, ๐ต โŠ† ๐ถ. Then, since ๐ต generates ๐ด, ๐ต
generates ๐ถ โˆ– ๐ต and ๐ถ โˆ– ๐ต โ‰  โˆ… implies ๐ถ not linearly independent, which is a
contradiction.
Let ๐‘Ž โˆˆ ๐ต โˆ– ๐ถ. ๐ถ generates ๐‘Ž and so ๐‘Ž is a linear combination of points in ๐ถ,
at least one of which is in ๐ถ โˆ– ๐ต (say ๐‘Žโ€ฒ) (else ๐ต is a dependent set).
By substitution, ๐ถ โˆช ๐‘Ž โˆ– {๐‘Žโ€ฒ } โ‰ก ๐ถโ€ฒ is linearly independent and ๐ถโ€ฒ generates ๐ด.
But ๐ต โˆฉ ๐ถ โ€ฒ = ๐ต โˆฉ ๐ถ + 1.
Continue this until ๐ต = ๐ถ โ€ฒโ€ฒ โ€ฆโ€ฒ . (only finitely many tries).
So ๐ต = ๐ถ โ€ฒโ€ฒ โ€ฆโ€ฒ = โ‹ฏ = ๐ถ โ€ฒ = |๐ถ|.
๏‚œ
Linear Programming 2012
12
๏ฑ Def: Define rank for any set ๐ด โŠ† ๐‘…๐‘› as the size (cardinality) of the basis of ๐ด.
If ๐ด is itself a subspace, rank(๐ด) is called dimension of ๐ด ( dim(๐ด)).
Convention: dim(๏ƒ†) = โˆ’1.
For matrix:
row rank โ€“ rank of its set of row vectors
column rank - rank of its set of column vectors
rank of a matrix = row rank = column rank
Linear Programming 2012
13
๏ฑ Def: For any ๐ด โŠ† ๐‘…๐‘› , define the dual of ๐ด as ๐ด0 = {๐‘ฅ โˆˆ ๐‘…๐‘› : ๐‘Žโ€ฒ ๐‘ฅ =
0, for all ๐‘Ž โˆˆ ๐ด}. With some abuse of notation, we denote ๐ด0 = {๐‘ฅ โˆˆ
๐‘…๐‘› : ๐ด๐‘ฅ = 0}, where ๐ด is regarded as a matrix which has the elements
(possibly infinite) of the set ๐ด as its rows.
When ๐ด is itself a subspace of ๐‘…๐‘› , ๐ด0 called orthogonal complement of ๐ด.
(For matrix ๐ด, the set {๐‘ฅ โˆˆ ๐‘…๐‘› : ๐ด๐‘ฅ = 0} is called the null space of ๐ด.
๏ฑ Observe that for any subset ๐ด โŠ† ๐‘…๐‘› , ๐ด0 is a subspace.
๐ด0 is termed a constrained subspace (since it consists of solutions that satisfy
some constraints)
In fact, FBT implies that any ๐ด0 is finitely constrained, i.e. ๐ด0 = ๐ต0 for some
๐ต with ๐ต < +โˆž (e.g. ๐ต is a basis of ๐ด).
( Show ๐ด0 โŠ† ๐ต0 and ๐ด0 โŠ‡ ๐ต0 )
Linear Programming 2012
14
๏ฑ Prop: (simple properties of o-duality)
(i) ๐ด โŠ† ๐ต ๏ƒž ๐ด0 โŠ‡ ๐ต0
(ii) ๐ด โŠ† ๐ด00
(iii) ๐ด0 = ๐ด000
(iv) ๐ด = ๐ด00 ๏ƒ› A is a constrained subspace
Pf) (i) ๐‘ฅ โˆˆ ๐ต0 ๏ƒž ๐ต๐‘ฅ = 0 ๏ƒž ๐ด๐‘ฅ = 0 (๐ต โŠ‡ ๐ด) ๏ƒž ๐‘ฅ โˆˆ ๐ด0
(ii) ๐‘ฅ โˆˆ ๐ด ๏ƒž ๐ด0 ๐‘ฅ = 0 (definition of ๐ด0 ) ๏ƒž ๐‘ฅ โˆˆ (๐ด0 )0 (definition)
(iii) By (ii) applied to ๐ด0 , get ๐ด0 โŠ† ๐ด000
By (ii) applied to ๐ด and then using (i), get ๐ด0 โŠ‡ ๐ด000 .
(iv) ๏ƒž) ๐ด00 is constrained subspace ( ๐ด00 โ‰ก (๐ด0 )0 ), hence ๐ด is a
constrained subspace.
๏ƒœ) ๐ด constrained subspace ๏ƒž โˆƒ ๐ต such that ๐ด = ๐ต0 for some ๐ต
( By FBT, a constrained subspace is finitely constrained)
Hence ๐ด = ๐ต0 = ๐ต000 (from (iii)) = ๐ด00
๏‚œ
Linear Programming 2012
15
๏ฑ Picture:
๐ด00
๐ด000
๐ด = {๐‘Ž}
๐ด0
Linear Programming 2012
16
๏ฑ Set ๐ด with property (iv) (๐ด = ๐ด00 ) is called o-closed
Note: Which subsets of ๐‘…๐‘› ( constrained subspaces by (iv)) are o-closed?
All subspaces except ๏ƒ†
Linear Programming 2012
17
Review
๏ฑ Elementary row (column) operations on matrix ๐ด.
(1) interchange the positions of two rows
(2) ๐‘Ž๐‘– โ€ฒ ๏‚ฌ ๐œ†๐‘Ž๐‘– โ€ฒ, ๐œ† โ‰  0, ๐œ† โˆˆ ๐‘…, ๐‘Ž๐‘– โ€ฒ : ๐‘–-th row of matrix ๐ด
(3) ๐‘Ž๐‘˜ โ€ฒ ๏‚ฌ ๐‘Ž๐‘˜ โ€ฒ + ๐œ†๐‘Ž๐‘– โ€ฒ, ๐œ† โˆˆ ๐‘…
Elementary row operation is equivalent to premultiplying a nonsingular
matrix ๐ธ.
e.g.) ๐‘Ž๐‘˜ โ€ฒ ๏‚ฌ ๐‘Ž๐‘˜ โ€ฒ + ๐œ†๐‘Ž๐‘– โ€ฒ, ๐œ† โˆˆ ๐‘…
๏ƒฉ1
๏ƒน
๏ƒช 1
๏ƒบ
๏ƒช
๏ƒบ
1
๏ƒช
๏ƒบ
E๏€ฝ๏ƒช
๏ƒบ
๏
๏
๏ƒช
๏ƒบ
๏ƒช
๏ฌ ๏Œ 1 ๏ƒบ
๏ƒช
๏ƒบ
1
๏ƒซ
๏ƒป
Linear Programming 2012
18
๏ฑ ๐ธ๐ด = ๐ดโ€ฒ
(๐‘Ž๐‘˜ โ€ฒ ๏‚ฌ ๐‘Ž๐‘˜ โ€ฒ + ๐œ†๐‘Ž๐‘– โ€ฒ, ๐œ† โˆˆ ๐‘…)
๏ƒฉ1
๏ƒน๏ƒฉ
๏ƒช 1
๏ƒบ๏ƒช
๏ƒช
๏ƒบ๏ƒช
1
๏ƒช
๏ƒบ๏ƒช
๏ƒช
๏ƒบ๏ƒช
๏
๏
๏ƒช
๏ƒบ๏ƒช
๐‘˜๏‚ฎ ๏ƒช
๏ฌ ๏Œ 1 ๏ƒบ๏ƒช
๏ƒช
๏ƒบ๏ƒช
1
๏ƒซ
๏ƒป๏ƒซ
๐‘–
Linear Programming 2012
๏Œ
๏Œ
๏Œ
๏Œ
๏Œ
๏Œ
๏ƒน ๏ƒฉ
๏ƒบ ๏ƒช
๏ƒบ ๏ƒช
๏ƒบ ๏ƒช
๏ƒบ๏€ฝ๏ƒช
๏ƒบ ๏ƒช
๏ƒบ ๏ƒช
๏ƒบ ๏ƒช
๏ƒป ๏ƒซ
๏Œ
๏Œ
๏Œ
๏Œ
๏Œ
๏Œ
๏ƒน
๏ƒบ
๏ƒบ
๏ƒบ
๏ƒบ
๏ƒบ
๏ƒบ
๏ƒบ
๏ƒป
๐‘˜
19
๏ฑ Permutation matrix : a matrix having exactly one 1 in each row and column,
other entries are 0.
Premultiplying ๐ด by a permutation matrix ๐‘ƒ changes the positions of rows. If
๐‘˜-th row of ๐‘ƒ is ๐‘—-th unit vector, ๐‘ƒ๐ด has ๐‘—-th row of ๐ด in ๐‘˜-th row.
๏ฑ Similarly, postmultiplying results in elementary column operation.
๏ฑ Solving system of equations :
Given ๐ด๐‘ฅ = ๐‘, ๐ด: ๐‘š × ๐‘š, nonsingular
We use elementary row operations (premultiplying ๐ธ๐‘–โ€ฒ ๐‘  and ๐‘ƒ๐‘–โ€ฒ ๐‘  on both sides
of the equations) to get ๐ธ๐‘š โ€ฆ ๐ธ2 ๐‘ƒ2 ๐ธ1 ๐‘ƒ1 ๐ด๐‘ฅ = ๐ธ๐‘š โ€ฆ ๐ธ2 ๐‘ƒ2 ๐ธ1 ๐‘ƒ1 ๐‘,
If we obtain ๐ธ๐‘š โ€ฆ ๐ธ2 ๐‘ƒ2 ๐ธ1 ๐‘ƒ1 ๐ด = ๐ผ ๏‚ฎ Gauss-Jordan elimination method.
If we obtain ๐ธ๐‘š โ€ฆ ๐ธ2 ๐‘ƒ2 ๐ธ1 ๐‘ƒ1 ๐ด = ๐ท, ๐ท: upper triangular ๏‚ฎ Gaussian
elimination method. ๐‘ฅ is obtained by back substitution.
Linear Programming 2012
20
Back to subspace
๏ฑ Thm: Any nonempty subspace of ๐‘…๐‘› is finitely constrained.
(prove from FBT and Gaussian elimination. Analogy for cones later)
Pf) Let ๐‘† be a subspace of ๐‘…๐‘› .
2 extreme cases :
๐‘† = {0} : Then write ๐‘† = {๐‘ฅ: ๐ผ๐‘› ๐‘ฅ = 0}, ๐ผ๐‘› : ๐‘› × ๐‘› identity matrix.
๐‘† = ๐‘…๐‘› : Then write ๐‘† = {๐‘ฅ: 0โ€ฒ ๐‘ฅ = 0}
Otherwise, let rows of ๐ด be a basis for ๐‘†. Then ๐ด is ๐‘š × ๐‘› with 1 โ‰ค ๐‘š โ‰ค ๐‘› โˆ’ 1
and have ๐‘† = {๐‘ฅ โˆˆ ๐‘…๐‘› : ๐‘ฅ โ€ฒ = ๐‘ฆ โ€ฒ ๐ด for ๐‘ฆ๐‘– โˆˆ ๐‘…, 1 โ‰ค ๐‘– โ‰ค ๐‘š}.
Can use Gauss-Jordan elimination to find matrix of column operations for ๐ด
such that ๐ด๐ถ = [๐ผ๐‘š : 0] (๐ถ: ๐‘› × ๐‘› ×)
Hence have ๐‘† = {๐‘ฅ: ๐‘ฅ โ€ฒ ๐ถ = ๐‘ฆ โ€ฒ ๐ด๐ถ for ๐‘ฆ๐‘– โˆˆ ๐‘…, 1 โ‰ค ๐‘– โ‰ค ๐‘š}
= {๐‘ฅ: ๐‘ฅ โ€ฒ ๐ถ ๐‘— = ๐‘ฆ๐‘— , 1 โ‰ค ๐‘— โ‰ค ๐‘š for some ๐‘ฆ๐‘— โˆˆ ๐‘… and
(๐‘ฅ โ€ฒ ๐ถ)๐‘— = 0, ๐‘š + 1 โ‰ค ๐‘— โ‰ค ๐‘›}
= {๐‘ฅ: ๐‘ฅ โ€ฒ ๐ถ
๐‘—
= 0, ๐‘š + 1 โ‰ค ๐‘— โ‰ค ๐‘›}
These constraints define S as a constrained subspace.
Linear Programming 2012
๏‚œ
21
๏ฑ Cor 1: ๐‘† โŠ† ๐‘…๐‘› is o-closed ๏ƒ› ๐‘† is a nonempty subspace of ๐‘…๐‘› .
Pf) From earlier results,
๐‘† is o-closed ๏ƒ› ๐‘† is a constrained subspace
๏ƒ› ๐‘† is a nonempty subspace.
๏‚œ
๏ฑ Cor 2: ๐ด: ๐‘š × ๐‘›, define ๐‘† = {๐‘ฆ โ€ฒ ๐ด: ๐‘ฆ โˆˆ ๐‘…๐‘š } and ๐‘‡ = {๐‘ฅ โˆˆ ๐‘…๐‘› : ๐ด๐‘ฅ = 0}.
Then ๐‘† 0 = ๐‘‡ and ๐‘‡ 0 = ๐‘†.
Pf) ๐‘† 0 = ๐‘‡ follows because rows of ๐ด generate ๐‘†.
So by HW, have ๐ด0 = ๐‘† 0 .
( If rows of ๐ด โŠ† ๐‘† and ๐ด generates ๐‘† ๏ƒž ๐ด0 = ๐‘† 0 )
But here ๐ด0 โ‰ก ๐‘‡ ๏ƒž ๐‘† 0 = ๐‘‡
๐‘‡ 0 = ๐‘† : From duality, ๐‘† = ๐‘† 00 ( since ๐‘† is nonempty subspace, by Cor 1, ๐‘†
is o-closed.)
Hence ๐‘† = ๐‘† 00 = (๐‘† 0 )0 = ๐‘‡ 0 (by first part)
๏‚œ
Linear Programming 2012
22
๏ฑ Picture of Cor 2) ๐ด: ๐‘š × ๐‘›, define ๐‘† = {๐‘ฆ โ€ฒ ๐ด: ๐‘ฆ โˆˆ ๐‘…๐‘š }, ๐‘‡ = {๐‘ฅ โˆˆ ๐‘…๐‘› : ๐ด๐‘ฅ = 0}.
Then ๐‘† 0 = ๐‘‡ and ๐‘‡ 0 = ๐‘†
( Note that ๐‘† 0 is defined as the set {๐‘ฅ: ๐‘Žโ€ฒ ๐‘ฅ = 0 for all ๐‘Ž โˆˆ ๐‘†}. But it can be
described using finite generators of ๐‘†. )
๐‘‡ = ๐‘†0
๐ด=
๐‘Ž1 โ€ฒ
๐‘Ž2 โ€ฒ
๐‘Ž2
๐‘† = ๐‘‡0
๐‘Ž1
Linear Programming 2012
23
๏ฑ Cor 3: (Theorem of the Alternatives)
For any ๐ด: ๐‘š × ๐‘› and ๐‘ โˆˆ ๐‘…๐‘› , exactly one of the following holds
(I) โˆƒ ๐‘ฆ โˆˆ ๐‘…๐‘š such that ๐‘ฆ โ€ฒ ๐ด = ๐‘โ€ฒ
(II) โˆƒ ๐‘ฅ โˆˆ ๐‘…๐‘› such that ๐ด๐‘ฅ = 0, ๐‘ โ€ฒ ๐‘ฅ โ‰  0.
Pf) Define ๐‘† = {๐‘ฆ โ€ฒ ๐ด: ๐‘ฆ โˆˆ ๐‘…๐‘š }, i.e. (I) says ๐‘ โˆˆ ๐‘†
Show ~(๐ผ) ๏ƒ› (๐ผ๐ผ)
~(๐ผ) ๏ƒ› ๐‘ โˆ‰ ๐‘† ๏ƒ› ๐‘ โˆ‰ ๐‘† 00 (by Cor 1)
๏ƒ› โˆƒ ๐‘ฅ โˆˆ ๐‘† 0 such that ๐‘ โ€ฒ ๐‘ฅ โ‰  0
๏ƒ› โˆƒ ๐‘ฅ such that ๐ด๐‘ฅ = 0, ๐‘ โ€ฒ ๐‘ฅ โ‰  0.
๏‚œ
๏ฑ Note that Cor 3 says that a vector ๐‘ is either in a subspace ๐‘† or not. We can
use the theorem of the alternatives to prove that a system does not have a
solution.
Linear Programming 2012
24
Remarks
๏ฑ Consider how to obtain (1) generators when a constrained form of a subspace
is given and (2) constrained form when the generators of the subspace are
given.
๏ฑ Let ๐‘† be the subspace generated by rows of a ๐‘š × ๐‘› matrix ๐ด with rank ๐‘š.
Then ๐‘† 0 = {๐‘ฅ: ๐ด๐‘ฅ = 0}. Suppose the columns of ๐ด are permuted so that
๐ด๐‘ƒ = [๐ต: ๐‘], where ๐ต is ๐‘š × ๐‘š and nonsingular.
By elementary row operations, obtain ๐ธ๐ด๐‘ƒ = [๐ผ๐‘š : ๐ธ๐‘], ๐ธ = ๐ตโˆ’1 .
โˆ’๐ตโˆ’1 ๐‘
Then the columns of the matrix ๐ท โ‰ก ๐‘ƒ
constitute a basis for ๐‘† 0
๐ผ๐‘›โˆ’๐‘š
(from HW).
Since ๐‘† 00 = ๐‘ฆ: ๐‘ฆ โ€ฒ ๐‘ฅ = 0, for all ๐‘ฅ โˆˆ ๐‘† 0 = ๐‘ฆ: ๐ท โ€ฒ ๐‘ฆ = 0 by Cor 2 and ๐‘† =
๐‘† 00 for nonempty subspaces, we have ๐‘† = {๐‘ฆ: ๐ท โ€ฒ ๐‘ฆ = 0}.
Linear Programming 2012
25
๏ฑ Ex)
Let ๐ด =
1
1
1 2
1 1
and ๐ต =
.
0 โˆ’1
1 0
1
โˆ’1
1
โˆ’1
Then ๐ต
,๐ต ๐‘=
and ๐ท = โˆ’3 .
โˆ’1
3
1
If ๐‘† is generate by rows of ๐ด.
Then ๐‘† = ๐‘† 00 = {๐‘ฆ: ๐‘ฆ1 โˆ’ 3๐‘ฆ2 + ๐‘ฆ3 = 0}.
โˆ’1
0
=
1
Linear Programming 2012
26
Obtaining constrained form from generators
๐‘‡ = ๐‘†0
๐ด=
๐‘Ž1 โ€ฒ
1 1
=
1 0
๐‘Ž2 โ€ฒ
2
โˆ’1
(1, -3, 1)
๐‘Ž2
๐‘† = ๐‘† 00
0
Linear Programming 2012
๐‘Ž1
๐‘† 0 = {๐‘ฅ: ๐ด๐‘ฅ = 0}.
From earlier, basis for
๐‘† 0 is (1, โˆ’3, 1)โ€ฒ.
Constrained form for
๐‘† = ๐‘† 00 is {๐‘ฆ: ๐‘ฆ1 โˆ’
27
Remarks
๏ฑ Why need different representations of subspaces?
Suppose ๐‘ฅ โˆ— is a feasible solution to a standard LP min ๐‘ โ€ฒ ๐‘ฅ, ๐ด๐‘ฅ = ๐‘, ๐‘ฅ โ‰ฅ 0.
Given a feasible point ๐‘ฅ โˆ— , a reasonable algorithm to solve LP is to find ๐‘ฅ โˆ— +
๐œ†๐‘ฆ, ๐œ† > 0 such that ๐‘ฅ โˆ— + ๐œ†๐‘ฆ is feasible and provides a better objective value
than ๐‘ฅ โˆ— .
Then ๐ด ๐‘ฅ โˆ— + ๐œ†๐‘ฆ = ๐ด๐‘ฅ โˆ— + ๐œ†๐ด๐‘ฆ = ๐‘ + ๐œ†๐ด๐‘ฆ = ๐‘, ๐œ† > 0 ๏ƒ› {๐‘ฆ: ๐ด๐‘ฆ = 0}.
Hence we need generators of {๐‘ฆ: ๐ด๐‘ฆ = 0} to find actual directions we can use.
Also ๐‘ฆ must satisfy ๐‘ฅ โˆ— + ๐œ†๐‘ฆ โ‰ฅ 0.
Linear Programming 2012
28