New experiment for neutrinoless double beta decay search

Download Report

Transcript New experiment for neutrinoless double beta decay search

New experiment for the search of neutrinoless double beta decay of

76

Ge at LNGS GERmanium Detector Array (GERDA)

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

Outline

• General DBD situation and motivation • Technical details • Expected sensitivity of the experiment

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

Primary Objective: 0



:

(A,Z)  (A,Z+2) + 2e d d  Majorana nature  Effective mass: m ee = |  i

U

ei ² m i | u W W 

e

e

e  L=2 e u (decay generated by (V-A) cc-interaction via exchange of light Majorana neutrinos) S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

76

Ge results

• IGEX, HD-M bcg ~0.2 ev/kg/keV/y • T

1/2

>2 ·10

25

y • Klapdor’s claim T

1/2

~1.2

· 10

25

y (big errors)

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

Previous large scale projects

GENIUS – MAJORANA - GEM Assumed bkg: ~ 0.04

, 0.4

, 0.2

count/keV ton y M = 1 (10?) , 0.5

, 1 ton (86% enriched 76 Ge) 0  -DBD sensitivity T 10y ~ 2 , 0.4

, 1

·

10 28 y ~ 10 – 80 meV S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

Basic ideology of GERDA

• To collect most of the existing enriched detectors (11 kg from Hd-M, KI; 8kg IGEX, ITEP/INR) • Background of existing detectors is mostly due to surface contaminations (contacts, housing)  repacking with minimum material around • High Z materials to be put as far as possible from the diodes, the closest shield - high purity LN • Stepwise strategy 2 or LAr S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

• • • • • • • • • • • • • • • • • • • • • • • • •

GERDA collaboration

I. Abt j , M. Altmann j , A.M. Bakalyarov i , I. Barabanov g , C. Bauer c , M. Bauer l , E. Bellotti f C. B üttner j , S. Belogurov g,h , S.T. Belyaev i , A. Bettini k , L. Bezrukov g , V. Brudanin b , , V.P. Bolotsky h , A. Caldwell j , C. Cattadori a,f , M.V. Chirchenko i , O. Chkvorets c , H. Clement l , E. Demidova h , A. Di Vacri a , J. Eberth d , V. Egorov b , E. Farnea k , A. Gangapshev g , G.Y. Grigoriev i , V. Gurentsov g , K. Gusev b , W. Hampel c , G. Heusser c , W. Hofmann c , L.V. Inzhechik i , J. Jochum l , M. Junker a , S. Katulina b , J. Kiko c , I.V. Kirpichnikov h , A. Klimenko b,g , K.T. Kn öpfle c , O. Kochetov b , V.N. Kornoukhov g,h , R. Kotthaus j , V. Kusminov g , M. Laubenstein a , V.I. Lebedev R.H. Richter j i , X. Liu j , H.-G. Moser j , K. Rottler , I. Nemchenok b , L. Pandola a , P. Peiffer c , l , C. Rossi Alvarez k , V. Sandukovsky b , S. Sch önert c , S. Scholl l , J. Schreiner c , B. Schwingenheuer c , H. Simgen c , A. Smolnikov b,g , A.V. Tikhomirov i , C. Tomei a , C.A. Ur k , A.A. Vasenko h , S. Vasiliev b,g , D. Weißhaar d , M. Wojcik e , E. Yanovich g , J. Yurkowski b , S.V. Zhukov i , G. Zuzel c a INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy c b d Joint Institute for Nuclear Research, Dubna, Russia Max-Planck-Institut f ür Kernphysik, Heidelberg, Germany Institut f ür Kernphysik, Universität Köln, Germany f e Jagiellonian University, Krakow, Poland Universit à di Milano Bicocca e INFN Milano, Milano, Italy g Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia h Institute for Theoretical and Experimental Physics, Moscow, Russia j i Russian Research Center Kurchatov Institute, Moscow, Russia Max-Planck-Institut f ür Physik, München, Germany l k Dipartimento di Fisica dell’Università di Padova e INFN Padova, Padova, Italy Physikalisches Institut, Universit ät T¨ubingen, Germany S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

Figure 26: Scintillator module using a WLS fiber light guide for readout as well as a set of black strips for equalizing light collection.

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

Simulations of external gamma background 10 1 0,1 0,01 Single crystal in tank (act.) single crystal in tank (pas.) 252 crystal in tank (pas.) 252 crystal in tank (act.) 1E-3 1E-4 1E-5 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 tank inner diameter (m) Fig. 1 presents dependence of background index as a function of diameter of the vessel: for single crystal and for 252 crystal assembly. In the case of 252 crystal assembly a mode of Ar active shielding was also calculated.

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

Cosmogenic Co-60 inside diodes  1  2

Q ββ

β  2 + β  1 +  2 + β • T 0 for cosmic ray exposure: completion of mono-zone refinement • 0.017  Bq/kg per day exposure [Miley 92] • Benchmark test: detector production with 7.4 days exposure • assumption: 30 days  2.5 ·10 -3 / (keV·kg·y) • Kurchatov enriched crystals: ~5·10 -3 / (keV·kg·y) in 2006 S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

Phase I:

Background summary

external ~ 10 -3 internal < 10 -2 / (keV kg y) / (keV kg y) Units: 10 -3 / (keV kg y)

Phase II:

(No segmentation) (With segmentation) S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

Relations with Majorana

• Coordination and sharing of simulations • Coordination of R&D e.g. on segmentation • Participation in meetings • At the phase of 500-1000 kg experiment merging is possible

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

Procurement of enriched material

• Funding for ~30 kg of enriched Ge-76 secured • Contract with ECP close to signing: – Basic contract: enrichment, underground storage, optional purification • 2 kg pre-sample for quality control  28 kg • Non-enriched sample (15 kg) for reference • Special transport container designed to minimize activation • Optional waste enrichment to Ge-74 for “zero” detector S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

From Majorana WP S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

Shielding against cosmogenic activation at transport S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

Shielding • Spallation reactions are produced by nuclear active component of CR (mostly neutrons) • Attenuation length for this component is 150 g/cm 2 for air • Relevant cross sections behave like A 0.6

-A 0.8 , e.g. for Fe – attenuation length is ~200 g/cm 2 • Optimizing the shape of the shielding, taking into account angular distribution of nuclear active component may reduce flux 20-50 times with mass of shielding 15-20 ton, it is feasible for lend transport • But, hadron cascade generation by muons in the shielding material is a limitation (no Pb hence) carefull investigation of this phenomenon is underway. Shielding efficiency of 10-20 seems realistic anyway. Tests with Bi fission chamber may be usefull.

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

Dependence of the shielding mass on the material • Let take for (effective) s A ~A 0.73

• l~1/( s A n A )~1/ s A ·A/ r ~ A 0.27

/ r • M~ l 3 r~ A 0.81

/ r 2 PE 7.5

Al 1.98

Fe 0.41

Pb 0.59

Another argument – neutron production by muons S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

Neutron generation by muons (From M. Bauer) S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

Recent version of the SHIELD code (from N. Sobolevsky) 1. Transport of N,  , K, N and arbitrary nuclei (A,Z) up to 1 TeV/u.

2. Extended target as a combination of bodies limited by second order.surfaces

(CG-compatible) 3. Arbitrary chemical and isotope composition of materials in the target zones.

4. Ionization loss, fluctuation of ionization loss and multiple Coulomb scattering of charged hadrons and nuclear fragments.

5. 2- and 3-particle modes of meson decay.

6. Modeling of hA и AA-interactions in exclusive approach (MSDM-generator). 5 7. Memorizing of each hadron cascade tree during its simulation without loss of physical information.

8. Storing of sources of  , e  , e+ and of neutrons (E n <14.5 MeV) during simulation of the hadron cascade.55

9. Neutron transport (E n <14.5 MeV) on the basis of the28-groups ABBN neutron data library.

10. Analog and weighted simulation modes, open architecture of the code S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

Modeling of inelastic hA и AA-interactions (MSDM – Multi Stage Dynamical Model, from N. Sobolevsky) • • • Fast, cascade stage of nuclear reaction: DCM (Dubna Cascade Model ) [1] Independent Quark-Gluon String Model (QGSM) [2,3] Coalescence model [1] Pre-equilibrium emission of nucleons and lightest nuclei [4] • • • Equilibrium deexitation of residual nucleus: Fermi break up of light nuclei [5] Evaporation/Fission [5,6] Multifragmentation of higly excited nuclei (SMM) [7] 1.

V.D.Toneev, K.K.Gudima, Nucl. Phys.

A400

(1983) 173c. 2.

3.

4.

5.

N.S.Amelin, К.К.Gudima, V.D.Toneev. Yad.Fiz.

51

(1990) 1730 (in Russian).

N.S.Amelin, К.К.Gudima, S.Yu.Sivoklokov, V.D.Toneev. Yad.Fiz.

52

(1990) 272 (in Russian).

K.K.Gudima, S.G.Mashnik, V.D. Toneev, Nucl. Phys.

A401

(1983) 329. A.S.Botvina, A.S.Iljinov, I.N.Mishustin et al., Nucl. Phys.

A475

(1987) 663.

6.

G.D.Adeev, A.S.Botvina, A.S.Iljinov et al. Preprint INR, 816/93, Moscow, 1993. 7.

Botvina, A.S. Iljinov and I.N. Mishustin, Nucl.Phys.

A507

(1990) 649. Cross sections of NA-,  A- and AA-interactions: V.S.Barashenkov, A.Polanski.

Electronic Guide for Nuclear Cross Sections.

Cross sections of KA и NA-interactions: JINR E2-94-417, Dubna, 1994.

B.S.Sychev et al. Report ISTC, Project 187, 1999.

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

Expected sensitivity of GERDA

Phase I:

implementation of existing Ge-76 diodes (~15 kg) of HdM and IGEX in new experiment (“background free”) – operation in LN2 with background <10 – >15 kg y (free of background): scrutinize claim (97.8% excl. or 5 sigma confirmation) – sensitivity: 3 · 10 25 y, 0.24-0.77 eV -2 / keV kg y •

Phase II:

enlarge to ~35-40 kg (background <10 -3 – within 4 years: ~100 kg y – sensitivity: 2 · 10 26 y, 0.09-0.29 eV / keV kg y) •

Phase III:

(depending on physics results of Phase I+II and on the understanding of backgrounds) – world-wide collaboration (Majorana):  500 kg S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

Expected results for DM

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04

conclusions

• New well thought out experiment is born • Let’s wish it buon voyage

S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04