SLOWING DOWN - Royal Institute of Technology
Download
Report
Transcript SLOWING DOWN - Royal Institute of Technology
DIFFUSION OF NEUTRONS
OVERVIEW
•Basic Physical Assumptions
•Generic Transport Equation
•Diffusion Equation
•Fermi’s Age Equation
•Solutions to Reactor Equation
Basic Physical Assumptions
•
•
•
•
•
•
Neutrons are dimensionless points
Neutron – neutron interactions are neglected
Neutrons travel in straight lines
Collisions are instantaneous
Background material properties are isotropic
Properties of background material are known
and time-independent
HT2004: Reactor Physics
Diffusion of Neutrons
2
4.55 1010
cm;
p
E
E is in eV
E 0.01eV 4.55 10 9 cm
(a)
HT2004: Reactor Physics
(b)
Diffusion of Neutrons
3
v
χm
θ
v´
rm
b
rc
rc
HT2004: Reactor Physics
Diffusion of Neutrons
4
Initial Definitions
ey
z
v
W
ey
ex
r
1
v; v vΩ
v
mv 2
E
2
Ω ( , )
Ω
y
x
dr dxdydz; dv dvxdvydvz
N(r, v, t)drdv Expected number of neutrons in dr within dv
HT2004: Reactor Physics
Diffusion of Neutrons
5
n(r, t )
N(r, v, t)dv dv dv N(r, v, t)dv
x
y
z
2
2
N
(
r
,
Ω
,
v
,
t
)
v
sin dvd d
0 0 0
N(r, Ω, E, t)dΩdE
04
dΩ sin d d
v
N (r, v, t ) N (r, Ω, E, t )dΩdE N(r, v, t )dv
m
N (r, Ω, v, t ) v 2 N (r, v, t )
N (r, Ω, E, t )
N (r, Ω, E, t )
1
N (r, Ω, v, t )
mv
HT2004: Reactor Physics
Diffusion of Neutrons
6
Angular Flux and Current Density
J (r , v , t ) v N ( r , v , t )
J (r, Ω, E, t ) vN (r, Ω, E, t ) Ω vN(r, Ω, E, t )
( r ,Ω ,E,t )
(r, Ω, E, t ) vN(r, Ω, E, t )
J
J (r, Ω, E, t ) Ω(r, Ω, E, t )
dS
J dS number of neutrons
crossing dS per 1 second
HT2004: Reactor Physics
Diffusion of Neutrons
7
Generic Transport Equation
time rate change due change due change due
of
change
to
leakage
to
to
macro
.
sources
of N
through S collisions forces
We ignore
macroscopic forces
Arbitrary volume V
N
N
(
r
,
v
,
t
)
d
r
J
(
r
,
v
,
t
)
d
S
S
V t coll dr V Q(r, v, t)dr
t V
HT2004: Reactor Physics
Diffusion of Neutrons
8
Generic Transport Equation
ex
ey
ez
x
y
z r
Gauss Theorem:
J(r, v, t) dS J(r, v, t)dr vN(r, v, t)dr v N(r, v, t)dr
S
V
V
V
N
N
v
N
Q
dr 0
V t
t coll
N(r, v, t)
N
v N(r, v, t)
Q(r, v, t)
t
t coll
HT2004: Reactor Physics
Diffusion of Neutrons
9
Substantial Derivative
Leonhard Euler's (1707-1783) description:
N
We fix a small volume
t
dN N
Q(r, v, t)
dt t coll
z
r
dN
We let a small volume move
dt
Joseph Lagrange's (1736-1813) description
y
x
N N (r , v , t )
HT2004: Reactor Physics
dN N r N v N
dt
t t r t v
N
N
F N
v
t
r
m v
Diffusion of Neutrons
10
Transport (Boltzmann) Equation
dN N
Q(r, v, t)
dt t coll
N
N
F N N
v
Q
t
r
m v t coll
N(r, v, t)
N
v N(r, v, t)
Q(r, v, t)
t
t coll
HT2004: Reactor Physics
Diffusion of Neutrons
11
Collision Term
cm2
s Ω, E Ω, E
sterad
eV
z Ω, E
Ω, E
s Ω, E Ω, E s Ω, E Ω, E NB
r
y
x
N
(r, Ω, E Ω, E)vN (r, Ω, E, t )dΩdE t (r, E)vN (r, Ω, E, t)
t coll 0 4
Total absorption
( Scattering to the current direction and energy )
HT2004: Reactor Physics
Diffusion of Neutrons
12
Neutron Transport Equation
N(r, v, t)
N
v N(r, v, t)
Q(r, v, t)
t
t coll
(r, Ω, E, t ) vN (r, Ω, E, t )
1
Ω t (r, Ω, E Ω, E) (r, Ω, E, t )dΩdE Q
v t
0 4
: initial condition
(r, Ω, E,0) 0 (r, Ω, E)
(R s , Ω, E, t ) 0 Ω n s 0 : boundary ( free surface) condition
HT2004: Reactor Physics
Diffusion of Neutrons
13
Boundary Condition
Outgoing direction
Ω
Outward normal
ns
Incoming direction
r
Volume V
Ω
z
Rs
V
Surface S
y
x
(r, Ω, E, t) rS 0 when ns Ω 0
HT2004: Reactor Physics
Diffusion of Neutrons
14
Delayed Neutrons
(r, Ω, E Ω, E) f (r, Ω, E Ω, E) sc (r, Ω, E Ω, E)
6
1
Ω t sc dΩdE (1 ) f dΩdE iCi Q
v t
i 1
0 4
0 4
Ci
iCi i f dΩdE
t
0 4
6
i 0.0065
i 1
f (r, Ω, E Ω, E ) f (r, E ) f f (r; Ω, E Ω, E )
1
(r; E E )
4
(r; E E ) (r; E E )(r; E )
f f (r; Ω, E Ω, E )
(r; E E )dE 1;
f (r, Ω, E Ω, E )
HT2004: Reactor Physics
Diffusion of Neutrons
(r; E E ) (r, E )
(r, E )
(r; E ) f (r, E )
4
15
Difficulties
• Mathematical structure is too involved
• Mixed type equation (integro-differential), no way
to reduce it to a differential equation
• Boundary conditions are given only for a halve of
the values
• Too many variables (7 in general)
• Angular variable
n(r, t ) N (r, Ω, E, t )dΩdE;
HT2004: Reactor Physics
(r, t ) (r, Ω, E, t )dΩdE
Diffusion of Neutrons
16
Angular Measures
180 Solar disks
HT2004: Reactor Physics
Diffusion of Neutrons
17
Plane Angles
ds nds
er
n
r
C
R
HT2004: Reactor Physics
R
d
φ
Diffusion of Neutrons
ds cos er ds
r
r
18
Solid Angles
dA ndA
er Ω
n
r
dΩ
A
2
R
HT2004: Reactor Physics
Diffusion of Neutrons
dA cos Ω dA
2
r
r2
19
One-Group Diffusion Model
•
•
•
•
Infinite homogeneous and isotropic medium
Neutron scattering is isotropic in Lab-system
Weak absorption Σa << Σs
All neutrons have the same velosity v. (One-Speed
Approximation)
• The neutron flux is slowly varying function of position
HT2004: Reactor Physics
Diffusion of Neutrons
20
Derivation
JZ JZ JZ
J vn;
s dV
Number of collisions in dV
Neutrons through dA per 1 second
HT2004: Reactor Physics
2
2
dΩ
dA cos
s dV
4
4 r 2
dA cos s r
s dV
e
2
4 r
s dV
Neutrons scattered towards dA
s
J
4
vn
r
s
(r ) cos e
sin d dr d
0 0 r 0
Diffusion of Neutrons
21
0 x y z ...
x 0 y 0 z 0
Taylor’s series at the origin:
x r sin cos ; y r sin sin ; z r cos
r
sin
sin
r cos
y
z
x 0
0
0
(r ) 0 r sin cos
J
2
s
4
HT2004: Reactor Physics
2
0
0
s r
r
cos
sin d d r d
0
e
z 0
0
Diffusion of Neutrons
22
Jz
Jz
0
4
0
4
1
z 0
1
z 0
6 s
6 s
Jz Jz Jz
Jx
HT2004: Reactor Physics
1
3 s
1
3 s
z 0
och
x
Jy
Diffusion of Neutrons
1
3 s
y
23
Fick’s Law
J (r )
1
(r ); (r ) i
j z
3 s
x
y
z
J (r ) D (r );
CM-System → Lab-System:
1
s
3 s 3
tr s (1 );
J (r ) D (r );
HT2004: Reactor Physics
D
D
tr
1
tr
1
tr
3tr
3
Diffusion of Neutrons
24
Transport Mean Free Path
s
scos
scos2
t
tr s s cos s cos s cos . . . . . s cos
r
tr
s
1 cos
HT2004: Reactor Physics
2
3
tr s 1 cos
Diffusion of Neutrons
n
25
Diffusion Equation
Change rate Production Leakage Absorption
of
n
rate
rate
rate
Production
n
(
r
,
t
)
(
r
,
t
)
Q
(
r
,
t
)
f
cm3s
rate
Absorption
n
(
r
,
t
)
(
r
,
t
)
a
cm3s
rate
HT2004: Reactor Physics
Diffusion of Neutrons
26
Leakage Rate
Lz J z ( x, y, z dz)dxdy J z ( x, y, z)dxdy
z
2
D
dxdy D 2 dxdydz
z
z z dz z z
Jz
dz
dx
(x,y,z)
dy
y
2
2
Lx D 2 dxdydz; Ly D 2 dxdydz
x
y
x
2 2 2
Leakage from a unit volume D 2 2 2 D2
x y z
HT2004: Reactor Physics
Diffusion of Neutrons
27
Diffusion Equation
Change rate Production Leakage Absorption
of
n
rate
rate
rate
Time-dependent:
Time-independent:
Time-independent
from a steady source
HT2004: Reactor Physics
1
D 2 a Q;
v t
Q Qext f
D 2 a Q 0
D 2 a Q 0
2
1
1
D a s a tr
2
Q
0;
L
2
L
D
a
3
3
Diffusion of Neutrons
28
Laplace’s Operator
2
2
2
2 2
2
x y z
2
Cartesian geometry
1
1 2
2
r
2
2
2
r r r r
z
1 2
1
1
2
2
r
2
sin
2 2
r r r r sin
r sin 2
2
1
1 2
1 d n d
r
r
r
2
2
n
x r r r r r r r dr dr
Cylindrical geometry
Spherical geometry
n = 0 for slab
2
HT2004: Reactor Physics
Diffusion of Neutrons
n = 1 for cylindrical
n = 2 for spherical
29
1.
2.
3.
4.
CONDITIONS:
The neutron flux finite and non-negative.
- symmetric if there is any symmetry in the system
Boundary conditions for interface between two different media:
neutron flux and neutron current density are continuous
No return from a free surface - the flux becoming zero at extrapolated length.
HT2004: Reactor Physics
Diffusion of Neutrons
30
Interface between 2 different
media:
1
Jz
0
4
1
0
1
,
J
z
6 s z 0
4 6 s z 0
for +z - direction:
for -z - direction:
A
4
trA A B trB B
6 z
4
6 z
trA A B trB B
6 z
4
6 z
A
4
HT2004: Reactor Physics
Diffusion of Neutrons
A B
DA
A
DB B
z
z
31
Boundary Condition
Transport eq.
Free surface
Diffusion eq.
J
0
4
tr
0; 0 0
6 x 0
3
0
2 tr
x 0
0.66tr 0.71tr
Straight line extrapolation from x = 0 towards vacuum:
( x) 0
for
2
x tr (exact 0.71)
3
extrapolation length = 0.71 tr
HT2004: Reactor Physics
( x) 0
3
2tr
0 x
1
1
0
0
x
0.66
x
0.71
0
0
tr
tr
Diffusion of Neutrons
32
Plane Infinite Source in Infinite Medium
Transport equation
Q0
d 2
D 2 a ( x) Q( x) 0
dx
Q0 ( x)
d 2 1
Q( x)
2 ( x)
2
dx L
D
D
( x)
3s
x=0
d 2 1
x L
x L
(
x
)
0
(
x
)
Ae
Be
dx 2 L2
lim ( x) 0 B 0
x
( x)
Q0
Q0 L
lim J ( x)
A
x 0
2
2D
HT2004: Reactor Physics
Diffusion of Neutrons
Q0 L x
e
2D
L
33
Point Source in Infinite Medium
1 d 2 d
r
a (r ) Q( x) 0
2
r dr dr
1 d 2 d 1
r
2 (r ) 0 r 0
2
r dr dr L
D
r
e r L
e r L
(r ) A
B
r
r
lim (r ) B 0
r
Q0
lim 4 r J (r ) Q0 A
r 0
4 D
Q0 e r L
(r )
4 D r
2
n abs. (r, r dr ) a (r )4 r 2dr r r L
2
p(r )dr
2 e dr r r 2 p(r )dr 6 L2
Q0
Q0
L
0
HT2004: Reactor Physics
Diffusion of Neutrons
34
Plane Infinite Source in Slab Medium
1
1
a 2
a2
x
0.71
a
a 2
tr
Q0
( x)
Slab:
a2 x
QL
2L
( x) 0
2D cosh a
2L
( x)
x = -a/2
Q0 L x
e
2D
Infinite:
L
sinh
x=0
HT2004: Reactor Physics
x = a/2
Diffusion of Neutrons
35
Plane Infinite Source with Reflector
d21 1
2 1 ( x) 0
2
dx
L1
2
1
Q0
1
Reflector
2
Reflector
a
d22 1
2 2 ( x) 0
2
dx
L2
HT2004: Reactor Physics
Diffusion of Neutrons
Bare slab
36
Age of Neutrons
Energy
• q(E) - number of neutrons, which per cubiccentimeter and second pass energy E.
• q(E) = [n cm-3 s-1]
• X-sections depend on E: D(E),Σs(E),...
E0
E0
D( E) dE
E t (E) E (E)
E
Slowing down medium: s
Ef
a s t
D( E) dE D log E f Eth
th ( Eth )
t ( E) E s
Eth
1
th D s ns D Lmts
HT2004: Reactor Physics
Diffusion of Neutrons
Q
cm2
q(E)
ln
1
1 2
rs
6
37
Fermi’s Age Equation
(r, E)dE is the number of neutrons at r with energies in (E, E dE)
D( E) 2 (r, E)dE a (r, E)dE Q(r, E)dE 0
q(E+dE)
q(r, E)
Q(r, E)dE q(r, E dE) q(r, E)
dE
E
D(E)2 (r, E)dE a (r, E)dE
q(E)
E+dE
E
q(r, E)
dE 0
E
q( E) dE
Continuous slowing down: (E)dE
t (E) E
q(r, E)
a (E)
D( E)
2
q(r, E)
q(r, E)
0
t (E)E
t (E)E
E
HT2004: Reactor Physics
Diffusion of Neutrons
38
Fermi’s Age Equation (cont)
q(r, E)
(E)
D( E)
2q(r, E) a
q(r, E)
0
t (E)E
t (E)E
E
a ( E) dE
;
t ( E) E
E
E0
qˆ (r, E) q(r, E) exp
qˆ (r, E) q(r, E) a ( E) 0
qˆ (r, E)
D(E)
2qˆ (r, E)
E
t (E)E
new variable: ( E)
HT2004: Reactor Physics
E0
D( E) dE
E t (E) E
qˆ (r, )
2qˆ (r, )
Diffusion of Neutrons
39
Solutions to the Age Equation
q 2 q
2
x
No absorption
x2
exp
4
qpl ( x, ) Q0
12
4
x=0
r
q 1 2 q
2 r
r r r
HT2004: Reactor Physics
No absorption
Diffusion of Neutrons
r2
exp
4
qpt (r , ) Q0
32
4
40
Slowing Down Density for
Different Fermi’s Ages
q(r,)
r2
exp
4
qpt (r , ) Q0
32
4
0.08
=0.5
=1.0
=1.5
0.06
0.04
0.02
0.00
-6
HT2004: Reactor Physics
-4
-2
Diffusion of Neutrons
r
0
2
4
6
41
Migration Area (Length)
Fast neutron
borne
r
1
L2 rth2
6
M2
rs
rth
1 2
r
6
1 N 2
r ri ;
N i 1
2
1 N 2
r rs ,i ;
N i 1
2
s
1 N 2
r rth ,i
N i 1
2
th
r rs rth
Fast neutron
thermalized
r rs rth r 2rs rth r
2
Thermal neutron
absorbed
2
2
s
2
th
r 2 rs2 2rs rth rth2 rs2 rth2
r2
2
2
r
q
(
r
,
)4
r
dr
pt
0
q
pt
(r, )4 r 2dr
6 rs2 6 th
0
M 2 th L2 L2s L2
HT2004: Reactor Physics
Diffusion of Neutrons
42
Diffusion and Slowing Down
Parameters for Various Moderators
Moderator
g/cm3
1.0
tr
cm
0.43
L
cm
2.7
tth
ms
0.21
H2O
D2O
(pure)
D2O
(normal)
Be
1.1
2.5
165
1.1
2.5
1.8
BeO
C (pure
graphite)
C (normal.
0.92
ts
s
1
0
cm2
27
130
0.51
8
131
100
50
0.51
8
115
1.5
22
3.8
0.21
10
102
2.96
1.4
31
8.1
0.17
12
100
1.6
2.6
59
17
0.158
24
368
1.6
2.6
50
12
0.158
24
368
graphite)
HT2004: Reactor Physics
Diffusion of Neutrons
43
Neutrons in Multiplying Medium
n
D 2 a Q
t
n(r, E, t)
2
dE
D
(
E
)
(r, E, t)dE a (E)(r, E, t)dE Q(r, E, t)dE
th t
th
th
th
Assumption:
(r, E, t)dE th (r, t);
th
(r, E, t ) F (r ) G( E) T (t )
n(r, E, t)dE
th
th (r, t )
;
vav
a (E)(r, E, t)dE acth (r, t);
D(E)(r, E, t)dE
Dc th
th
th
1 th (r, t )
Dc 2 th (r, t ) ac th (r, t ) Qth (r, t )
vav
t
HT2004: Reactor Physics
Diffusion of Neutrons
44
Principles of a Nuclear Reactor
E
Leakage
N2
2 MeV
N2
k
N1
Resonance abs.
ν ≈ 2.5
Non-fissile abs.
1 eV
Fast fission
Slowing down
n/fission
Energy
N1
Non-fuel abs.
Fission
200 MeV/fission
HT2004: Reactor Physics
Leakage
Diffusion of Neutrons
45
Total number of fission neutrons
Fast fission factor
Number of fission neutrons from thermal neutrons
Resonance escape probability p( E) e
E0
dE
a a s E
E
1.02
0.87
Ff
Conditional probability Pf F F
a a
Ff
Ff
Number of neutrons per absorption in fuel Pf F 1.65
a
aF
Thermal utilization f
0.71
a
k fp
Fast non-leakage probability
PFNL 0.97
Thermal non-leakage probability PTNL 0.99
k k PNL fp PFNL PTNL
Non-leakage probability PNL PFNL PTNL
HT2004: Reactor Physics
Diffusion of Neutrons
46
p f th dV
Rate of neutron production in core Core
k
Rate of neutron absorption in core
ath dV
Core
k a p f Qth p f th k ath
1 th (r, t )
Dc 2 th (r, t ) ac th (r, t ) Qth (r, t )
vav
t
k 1
1 th (r, t)
2th (r, t) 2 th (r, t)
t
Lc
vav Dc
L2c
Dc
ac
k 1
B 2
Lc
2
m
2
th (r )
In the stationary case: Bm2
th (r )
HT2004: Reactor Physics
Diffusion of Neutrons
47
Criticality Condition
1 th (r, t)
2th (r, t) Bm2 th (r, t )
t
vav Dc
th (r, t) F (r) T (t)
1
dT (t ) 2 F (r )
Bm2
F (r )
vav DcT (t ) dt
2 F (r)
Bg2 2 F (r) Bg2 F (r) 0
F (r)
In a critical reactor: Bg2 Bm2
HT2004: Reactor Physics
Diffusion of Neutrons
48
Solution of a Reactor Equation
1
L L 1.42 λtr
R R 0.71 λtr
2Φ 1 Φ 2Φ
2
B
Φ0
2
2
r
r r
z
Φ(r, z) F(r) G(z)
1 d 2 F 1 dF 1 d 2G
2
B
0
2
2
F dr
Fr dr G dz
B2 α 2 β 2
1 d 2 F 1 dF
2
α
F dr 2 Fr dr
Symmetry: A 0
HT2004: Reactor Physics
1 d 2G
2
β
G dz 2
G( z) A sin z C cos z
Diffusion of Neutrons
49
L
G(z) Ccos( z) z
2
2
d
F
dF
x αr x 2 2 x
x2F 0
dx
dx
1
βn
π
πz
G(z) Ccos
L
L
F ( x) DJ0 ( x) EY0 ( x)
or
F (r ) DJ0 ( r ) EY0 ( r )
2.405
R
2.405r
F (r ) DJ 0
R
HT2004: Reactor Physics
Diffusion of Neutrons
50
πz 2.405 r
Φ(r, z) Acos
J0
L R
A B C Φ max
πz 2.405 r
Φ(r, z) Φ max cos
J0
L R
2
π
2.405
B2
L
R
2
Rectangular
πy
πx
πz
Φ(r, z) Φ max cos
cos
cos
a
c
b
π
π
π
B
a
b
c
Cylinder
πz 2.405 r
Φ(r, z) Φ max cos
J0
L R
π
2.405
B
L
R
Sphere
Φ(r ) Φ max
HT2004: Reactor Physics
πr
sin
R
r
Diffusion of Neutrons
2
2
2
2
2
2
π
B
R
2
2
51
2
Critical Size of a Reactor
We assume bare homogenous reactor
For thermal neutrons we get:
Slowing down neutrons:
D2(r ) a(r ) q(r , th ) 0
q(r , )
q(r , )
2
Assumption:
Reactor is sufficiently big to treat neutron spectrum independently of space variables
T ( )
q(r , ) R(r )T ( ) T ( ) R(r ) R(r )
2 R(r )
1 dT ( )
B2 T ( ) T0 e B
R(r )
T ( ) d
2
2
2 R B2 R 0
q(r , ) R(r )T0 e
B2
At the beginning slowing down density is
=0
HT2004: Reactor Physics
R(r)T0 q(r ,0) af
Diffusion of Neutrons
52
For > 0 one has to take into account resonance
capture through p – resonance passage factor.
R(r)
Φ(r) 2 Φ B2Φ 0
q(r, τ) R(r) T0 pe
Σa Φ(r) f ηpe
B2 τ
B2 τ
Σ aΦ(r) k e
B2 τ
D 2 Σa Φ q 0
DB2 Σa Φ Σa Φk e B τ 0
2
or
B2
B2 τ
1 k e
2
L
L2
(B L 1) k e
2
2
HT2004: Reactor Physics
B2 τ
0
0
B2
k e
1
2 2
1 B L
Diffusion of Neutrons
53
Volume of an cylindrical reactor with
buckling derived from a critical
equation – the smallest critical size:
2.405
B2
L R
2
2
We assume that L L and R R
L(2.405)2
V R L
2
V R L
2
2
B
L
dV
0
dL
L
gives
B2
3
B
; R
2.405 3
B
2
gives
Vmin
148
B3
1
(side size)2
Generally: big reactor small B-value
HT2004: Reactor Physics
Diffusion of Neutrons
54
1
Optimum dimensions and critical mass of a
cylindrical core
HT2004: Reactor Physics
Diffusion of Neutrons
55
CRITICALITY EQUATION - physical interpretation
a k production rate in infinite reactor
a ke
B 2
production rate in the FINITE reactor
B2
k e
1
2 2
1 B L
k
k
k
2 2
2
2
2
2
2
(1 B L )(1 B ) 1 B ( L ) 1 B M
HT2004: Reactor Physics
Diffusion of Neutrons
k
r2
1 B
6
2
56
e
B 2
Ps non leakage factor for all epithermal neutrons
Thermal leakage:
D
D a
Thermal non - leakage factor:
D
a
1
D a DB2 a
1
Pt
2 2
B L 1
B 2
k e
k Ps Pt 1 for critical reactor
2 2
1 B L
HT2004: Reactor Physics
Diffusion of Neutrons
57