Thermalization
Download
Report
Transcript Thermalization
SLOWING DOWN OF NEUTRONS
•
•
•
•
Elastic scattering of neutrons.
Lethargy. Average Energy Loss per Collision.
Resonance Escape Probability
Neutron Spectrum in a Core.
HT2005: Rector Physics
T09: Thermalisation
1
Chain Reaction
n
β
235
92
U
n 0.1 eV
ν
Moderator
ν
235
92
U
γ
n 2 MeV
γ
235
92
U
β
HT2005: Rector Physics
T09: Thermalisation
2
Why to Slow Down (Moderate)?
10 4
235
(barns)
10 3
U
10 2
fission
10
1
10 0
capture
10
-1
10 -2 -3
10
10 -2
10 -1
10 0
10 1
10 2
10 3
10 4
10 5
10 6
10 7
Energy (eV)
235
92
U n
HT2005: Rector Physics
1
0
236
92
139
94
1
56 Ba 36 Kr 3 0 n (84%)
U 236
7
U
(16%)
T
2.
4
1
0
yr
92
1
2
*
T09: Thermalisation
3
Principles of a Nuclear Reactor
E
Leakage
N2
2 MeV
N2
k
N1
Fast fission
Resonance abs.
ν ≈ 2.5
Non-fissile abs.
1 eV
Slowing down
n n/fission
Energy
N1
Non-fuel abs.
Fission
200 MeV/fission
HT2005: Rector Physics
Leakage
T09: Thermalisation
4
Breeding
4
1
0
2
3
8
U
(barns)
3
1
0
2
1
0
t
o
t
a
l
1
1
0
0
1
0
c
a
p
t
u
r
e
1
1
0
2
1
0
3210 1 2 3 4 5 6 7
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
E
n
e
r
g
y
(
e
V
)
238
92
23.5min
2.3day
239
239
U 01n 239
U
Np
92
93
94 Pu
HT2005: Rector Physics
T09: Thermalisation
5
10 4
239
fission
(barns)
10
3
10 2
Pu
capture
10 1
10 0
10 -1
10 -2 -3
10
10 -2
10 -1
10 0
10 1
10 2
10 3
10 4
10 5
10 6
10 7
Energy (eV)
HT2005: Rector Physics
T09: Thermalisation
6
Energy Dependence
10 4
233
(barns)
10 3
U
10 2
10 1
fission
10 0
capture
10 -1
10 -2 -3
10
10 -2
10 -1
10 0
10 1
10 2
10 3
10 4
10 5
10 6
10 7
Energy (eV)
1
log log E const
2
HT2005: Rector Physics
T09: Thermalisation
1
E1 2
1
v
7
Breeding
10 4
232
(barns)
10 3
Th
10 2
10 1
capture
10 0
fission
10 -1
10 -2 -3
10
10 -2
10 -1
10 0
10 1
10 2
10 3
10 4
10 5
10 6
10 7
Energy (eV)
23.3min
27.4day
233
233
Th 01n 23390Th
Pa
91
92 U
232
90
HT2005: Rector Physics
T09: Thermalisation
8
Space and Energy Aspects
cm2
s Ω, E Ω, E
sterad eV
z Ω, E
dΩ
Ω, E
r
dns s Ω, E Ω, E n r, Ω dΩdE
y
dns
2ns
s Ω, E Ω, E
ndΩdE nΩE
x
Double differential cross section
HT2005: Rector Physics
T09: Thermalisation
9
Differential Solid Angle
d
ez
θ
d3r
z
sin d
ey
r
y
dΩ sin d d
Ω
ex
φ
x
HT2005: Rector Physics
T09: Thermalisation
10
Hard Sphere Model
θ
r
Total scattering
cross section σ = 2πr2
n
HT2005: Rector Physics
T09: Thermalisation
r
11
Hard Sphere Scattering
dθ
impact parameter
cross section σ(θ)
θ
b(θ)
n(r)
r
σ(θ) n is the number of neutrons deflected by an angle greater than θ
HT2005: Rector Physics
T09: Thermalisation
12
Unit sphere r = 1
n
d 2 sin d
d 2 bdb
Number of neutrons scattered within d d n
Angular density ns
Area on the unit sphere
d
Number of neutrons scattered within d , dns
HT2005: Rector Physics
T09: Thermalisation
d
n d
d
13
Differential Cross Section
Number of neutrons
scattered within d
d
dns
n d
d
dns
dns
d
s Ω Ω
nd
d
Detector
n
s s Ω Ω dΩ
s Ω Ω s Ω Ω
HT2005: Rector Physics
T09: Thermalisation
14
Elastic Scattering
μc cos( )
μ0 cos()
vc
u
u0
v
U0
μ0
A2 1 2 A cos
E E0
( A 1)2
HT2005: Rector Physics
v cos u cos vc
U
v sin u sin
1 Aμ c
1 A2 2 Aμ c
E0
1
E
0 A 1
A 1
2
E0
E
T09: Thermalisation
15
Energy Loss
A 1 2 A cos
A 1
E E0
E0
E E0
2
( A 1)
A 1
2
2
θ = 180
A 1
A 1
E
HT2005: Rector Physics
2
E
T09: Thermalisation
θ=0
E0 E E0
E0
E0
E
16
n(v)
neutron
cm3 eV
mv
E
2
2
neutron
cm3 cm s
Energy
n( E)
n(v)dv
n(E)dE
E+dE
v 2mE
E
dE mvdv
dE
n(v) n( E)
mvn( E) 2mE n( E)
dv
dv
1
n( E) n( v)
n( v)
dE mv
HT2005: Rector Physics
Velocity
Change of Variables
T09: Thermalisation
v+dv
v
n( E)dE n(v)dv
dv
n( E) n(v)
dE
dE
n( v) n( E)
dv
17
??
p(E;E0)
E0
E0
E
E-dE
E
p( )d p( E )dE
E 1 A2 2 A cos
E0
1 A2
dE
2A
sin d
2
E0
1 A
HT2005: Rector Physics
T09: Thermalisation
18
Quantum mechanics + detailed nuclear physics analysis conclude
Elastic scattering is isotropic in CM system for:
• neutrons with energies E < 10 MeV
• light nuclei with A < 13
p( )d
The area of the ring rd
Total surface area of the sphere
2 r sin rd 1
sin d
2
4 r
2
dE
2A
2A
sin
d
2p( )d
2
2
E0
1 A
1 A
1 A
p( E)dE p( )d
4A
p( E)
HT2005: Rector Physics
2
dE
E0
1
p( E E0 )
E0 (1 )
T09: Thermalisation
19
Post Collision
Energy Distribution
1
P E
1
E0 (1 )
p(E) p(E E0 )
E
E0
E0
E0
E
1
E0
2
1
E
E0
2
E0
HT2005: Rector Physics
T09: Thermalisation
20
Average Logarithmic
Energy Loss
E0
E
ln 0
E
Eo
ln
E0
p( E)dE
E
E0
p( E)dE
A 1 ln A 1
1
ln 1
1
2A
A 1
2
Eo
1
HT2005: Rector Physics
for A 1
2
2
A
3
for A 10
T09: Thermalisation
21
Average Logarithmic
Energy Loss
0
10
Average lethargy gain and
-1
10
-2
10
0
10
1
10
2
10
Mass number A
HT2005: Rector Physics
T09: Thermalisation
22
1.2
2
A
2
3
A 1
1
1.0
2
ln
A 1
A 1
0.8
2A
Exact
Approx.
0.6
0.4
0.2
0.0
0
2
4
6
8 10 12 14 16 18
A
HT2005: Rector Physics
T09: Thermalisation
23
Number of collision
required for thermalisation:
2 106
E0
ln
ln
E 0.025 18.2
N
For non-homogeneous medium:
N
N
i
s ,i i
i
i
s ,i
i
Average cosine value of the
scattering angle in CM-system
c cos
p( )d p( c )dc
1
1
sin d dc
2
2
1
1
p ( c ) c
2
c
pc ( c )d c
0
1
1
p ( )d
c
c
c
1
HT2005: Rector Physics
T09: Thermalisation
24
Average Cosine in Lab-System
1
E0
0 0 p( c )d c 0 p( E0 E )dE
1
μ0
E 0
A 1
1
0
31
1
2
3
A 1
A
1
1 Aμ c
1 A2 2 Aμ c
2
2
0 cos
3A
HT2005: Rector Physics
T09: Thermalisation
25
Material
A
α
0
1H
1
2
4
0
0.111
0.360
0.667
0.333
0.167
6
9
10
0.510
0.640
0.669
0.095
0.074
0.061
H2O
12
238
*
0.716
0.938
*
0.056
0.003
0.037
D2O
*
*
0.033
2D
4He
6Li
9Be
10B
12C
238U
HT2005: Rector Physics
T09: Thermalisation
26
Slowing-Down Features of Some
Moderators
Moderator
ξ
N
ξΣs
ξΣs/Σa
H 2O
0.927
19.7
1.36
62
D 2O
0.510
36
0.180
5860
Be
0.209
87
0.153
138
C
0.158
115
0.060
166
U
.0084
2170
.0040
0.011
N - number of collision to thermal energy
Ss - slowing down power
Ss/Sa - moderation ratio (quality factor)
HT2005: Rector Physics
T09: Thermalisation
27
Neutron Velocity Distribution
kB = 1.381×10-23 J/K = 8.617×10-5 eV/K
v+dv
v
Velocity space:
4πv2dv
Probability that energy level
E=mv2/2 is occupied:
p( E) e
n(v) n0
HT2005: Rector Physics
E
kBT
4 v
2 kBT
e
mv 2
2 kBT
2
m
3
2
T09: Thermalisation
e
mv 2
2 kBT
28
Maxwell Distribution for
Neutron Density
thermal spectrum
"hard" spectrum
and corresponding
energy:
vMP
1,0
2kBT
v0
m
mv02
E0
k BT
2
0,8
0,6
n(v)
The most
probable velocity:
0,4
0,2
v
2
4v 2 v0
n(v)dv n0
e
dv
3
v0
0,0
0
HT2005: Rector Physics
T09: Thermalisation
2000 4000 6000 8000
Neutron Velocity (m/s)
29
Maxwell Distribution
for Neutron Flux
4v 3
(v)dv n0 3
e
v0
3
4v
n0 v0 4
e
v0
3
v
v0
v
v0
4v
0 4
e
v0
v
v0
Don’t forget :
HT2005: Rector Physics
2
v MP
dv
2 k BT
v0
m
2
dv
v
vn(v)dv
0
n(v)dv
2
2
v0 1.128v0
0
dv
v2
mv2
E
2
dE mvdv
T09: Thermalisation
3 2
v0
2
mv 2 3
k BT
2
2
30
0,5
( E) M ( E)
E
e
2
k BT
E
k BT
0,4
n(E)
E0 k BT
0,3
n(E), (E)
E 2 k BT
(E)
0,2
0,1
0,0
HT2005: Rector Physics
0
T09: Thermalisation
2
4
Neutron Energy (E/k T)
B
6
31
Average Energy of Neutrons
1
3
kT
v 2 n(v)dv v02 3 B
n0 0
2
m
mv 2 3
1
1
1
E
k BT mvx2 mvy2 mvz2
2
2
2
2
2
1
1
1
1
2
2
2
mvx mvy mvz k BT
2
2
2
2
Neutron flux distribution:
For thermal neutrons
HT2005: Rector Physics
( E )dE 0
th
E
kB T
2
e
3 v0
3 v0
0
0
E
kB T
dE
(v)dv vn(v)dv
T09: Thermalisation
32
Average cosine of scattering angle:
0 cos
LAB-system:
CM :
2
3A
c cos 0
The consequence of µ0 0 in the laboratory-system is that the neutron
scatters preferably forward, specially for A = 1 i.e. hydrogen and
practically isotropic scattering for A = 238 i.e. Uranium, because µ0 0
i.e. 90o in average. This corresponds to isotropic scattering.
ltr is defined as effective mean free path for non-isotropic scattering.
HT2005: Rector Physics
T09: Thermalisation
33
Transport Mean Free Path
Information regarding the
original direction is lost
ls
lscos
lscos2
lt
r
l tr l s l s cos l s cos l s cos . . .. . l s cos
2
ltr
ls
1 cos
HT2005: Rector Physics
Ss
1
ls
Str
3
1
ltr
T09: Thermalisation
n
Str S s 1 cos
34
Slowing-Down of Fast Neutrons
• Infinite medium
• Homogeneous mixture of absorbing and
scattering matter
• Continues slowing down
• Uniformly distributed neutron source Q(E)
Φ(E) = [n/(cm2×s×eV)]
Φ(E)dE = number of neutrons
with energies in dE about E
HT2005: Rector Physics
T09: Thermalisation
35
Continues Slowing-Down
assumed slowing-down
E
real slowing-down
dE
dt
HT2005: Rector Physics
t
T09: Thermalisation
36
Slowing-Down Density
Energy
• q(E) - number of neutrons, which per
cubic-centimeter and second pass energy
E. If no absorption exists in medium, so:
q(E) = Q; Q - source yield (ncm-3 s-1)
• Assuming no or weak absorption
(without resonances)
• Neutrons of zero energy are removed from
the system
HT2005: Rector Physics
T09: Thermalisation
Q
E0
E
q(E)
0
37
Lethargy Variable
u( E) u ln
Eref
E
; Eref
du
10MeV
dE
E
E0 Eref
E0
ln
ln
u( E) u( E0 ) u( E)
E
Eref E
E0
ln
E0
u
E
u( E)p( E)dE
Eo
E0
p( E)dE
1
1
ln
Eo
1 coll
u
u ,
on average
1 coll
u
u umax , at most
E0
umax ln
ln 1
E0
HT2005: Rector Physics
T09: Thermalisation
38
Lethargy Scale
1 collision
Energy
E0
u
u
ln 1
E0
Lethargy
Lethargy
u
n1coll
u
Number of collisions per 1 neutron to traverse u
HT2005: Rector Physics
T09: Thermalisation
39
Energy Dependence
Energy
Lethargy
Total number of collisions in dE
N coll S s ( E)dE S s (u)du
Eref
0
E/α
u ln 1
Number of neutrons crossing u
q(u)
Total number of collisions in du
q(u)
E
E+dE
N coll q(u)n
coll
1
u
u+du
S s ( E)dE Q
Infinite medium,
no losses,
constant Σs
HT2005: Rector Physics
( E)
1
E
du
dE
q(u)
Q
E
dE
Q
( E)
E
S s E
Qp( E)
( E)
Ss ( E) Sa ( E) E
T09: Thermalisation
40
Neutron spectrum
(E)
Eref
E
dE
u ln
; du
E
E
(u)du=-(E)dE
Q
(u)=E(E)=
Ss
(u)
0
u
5
10
15
20
E
10 MeV
HT2005: Rector Physics
0.025 eV
T09: Thermalisation
41
Resonance Absorption
Probability for
absorption per collision:
Sa
Sa Ss
Lethargy
u–lnα-1
E
E+dE
u
u+du
Number of collisions per
a neutron in du or dE:
du
Probability for absorption
in du or dE:
S a du
S a dE
Sa Ss
Sa Ss E
Absorption in du causes
a relative change in q:
dE
E
Energy
E/α
dq
S a du
S a dE
q Sa Ss
Sa Ss E
u
S
du
Sa Sa s
q q0 e 0
u
Sa ( u )
du
Sa ( u ) Ss ( u )
1
q( E)
p( E E0 )
e 0
q( E0 )
HT2005: Rector Physics
T09: Thermalisation
e
1
E0
E
Sa ( E )
dE
Sa ( E ) Ss ( E ) E
42
Resonance Escape
u
Sa ( u )
du
Sa ( u ) Ss ( u )
1
q( E)
p( E E0 )
e 0
q( E0 )
e
1
E0
E
Sa ( E )
dE
Sa ( E ) Ss ( E ) E
10 4
235
(barns)
10 3
U
10 2
fission
10
1
10 0
capture
10
-1
10 -2 -3
10
10 -2
10 -1
10 0
10 1
10 2
10 3
10 4
10 5
10 6
10 7
Energy (eV)
HT2005: Rector Physics
T09: Thermalisation
43
tsc~c
(u)
0(u)
(u)
q0
q
E
u
HT2005: Rector Physics
T09: Thermalisation
44
Life Time
How long time does the neutron exist under
slowing-down phase respectively as thermal?
Slowing-down in time - ts:
Number of collisions in du:
du
vdt
Number of collisions in dt:
ls
dE 2dv
E v
dt
2ls dv
v2
2ls ( v) dv 2ls 1 1
2 1
ts
2
v
v
v
S s v1
0
1
v1
v0
v(1 eV) = 1.39 · 106 cm/s
v(0.1 MeV ) = 4.4 · 108 cm/s
Thermal life-length - tt :
HT2005: Rector Physics
tt
la
v
1
Sav
T09: Thermalisation
45
Neutrons Slowing-Down Time
and Thermal Life-Time
Material
HT2005: Rector Physics
H2O
tfast
(s)
1
tthermal
(s)
200
D2O
8
1.5105
Be
10
4300
C
25
1.2104
T09: Thermalisation
46
Under the Neutron Life-Time
(3)
(2)
(1)
E
0
1 eV
0.1 MeV
10 MeV
E
(1) Fission neutrons - fast neutrons
(10 MeV-0.1 MeV)
E
k BT
(E)dE 0
e
dE
2
kBT
k BT 2.2 MeV
T 2.5 1010 K
(2) Slowing-down neutrons –
resonance neutrons (0.1MeV - 1 eV)
(3) Thermal neutrons
(1eV - 0.)
( E )dE
Qp( E )
dE
SsE
( E )dE 0
E
kB T
2
e
E
kB T
dE
k B T 0.025 eV
T 300K
HT2005: Rector Physics
T09: Thermalisation
47
The END
HT2005: Rector Physics
T09: Thermalisation
48
A2 1 2 A cos
E E0
2
( A 1)
A 1
E0
E E0
A 1
2
A 1
A
1
θ = 180
2
θ=0
E0 E E0
HT2005: Rector Physics
mv 2
E
; v 2mE
2
n( E), n(v)
E+dE
E
v+dv
n(E)dE n(v)dv
v
dE mvdv
dE
mvn( E) 2mE n( E)
dv
dv
1
n( E) n( v)
n( v)
dE mv
n(v) n( E)
T09: Thermalisation
49