Transcript Slide 1
HYCODE - January 2002 Hyperspectral Applications Ocean Optics Naval Research laboratory Stennis Space Center, MS Robert Arnone Rick Gould Alan Weidemann Vladimir Haltrin Sherwin Ladner Paul Martinolich NRL 7333 Objectives: •SeaWIFS / MODIS Coupled processing •Time Series of Satellite image bio-optical products •New IOP algorithms •Phills processing for IOP •Extending Surface RS optics to depth --- WFS • Affect of Volume Scattering Function -- LEO •on remote sensing algorithms • Particle size and scattering distributions -- LEO • Scales of Variability of optical processes. -- WSF • Bottom contamination in remote sensing algorithms for IOP NRL 7333 Time Series of West Florida Shelf and Leo 15 from 2000Present SeaWIFS Chl, Adg Atotal Bb Aphi Go To www7333.nrlssc.navy.mil NRL 7333 07/31/01 SeaWiFS Chlorophyll_oc4 0731 39.65 39.60 Y A xis Title S1,2,3 7 39.55 6 39.50 5 4 39.45 39.40 39.35 -74.40 -74.35 -74.30 -74.25 -74.20 -74.15 -74.10 X Axis Title Movie 2000chl 2000bb 2001chl 2000bb NRL 7333 Matching SeaWIFS and MODIS imagery ________ Similar 1 km scales from 2 satellites Y = A + B * X 0.014 0.012 0.010 P aram eter V alue E rror -----------------------------------------------------------A -1.37083E -4 2.11663E -4 B 1.02845 0.04952 -----------------------------------------------------------R SD N P -----------------------------------------------------------0.91134 8.45515E -4 90 < 0.0001 ------------------------------------------------------------ SWF Rrs Similar Optical properties - k532 attenuation coefficient 0.008 0.006 0.004 (Extending SeaWIFS Near IR Atm. Correction in coastal waters to MODIS) NRL 7333 0.002 0.000 0.000 0.002 0.004 0.006 0.008 ASD R rs 0.010 0.012 0.014 – 4.9 Leo – 15 Chlorophyll ( mg/l) Landsat 30- m 0.0 Rutgers Field Station SeaWiFS Node A 24.0 SST (C) 17.8 Particle size changes in the Bay , at the mouth and offshore. Affects the backscattering signature And the bb/b relationship SPOT And the RRS ~ bb/ a+bb relationship NRL 7333 Leo-15 Particle Analysis Stations 20-S04, 21-S04, 27-S08, and 28-S02 7 0(555) = 0.89 Log (particles per 100 ml) 6 Particle size distributions vary by area: 0(555) = 0.93 5 smallest particles offshore, largest at bay mouth (resuspension by tidal currents) 4 0(555) = 0.94 3 LEO 2000 0(555) = 0.94 2 2 20-S04 (river), slope = -0.25977, R = 0.994 2 21-S04 (bay mouth), slope = -0.18115, R = 0.989 2 27-S08 (offshore), slope = -0.31890, R = 0.990 2 28-S02 (north bay), slope = -0.29421, R = 0.992 1 0 0 5 10 15 Particle Diameter (mm) NRL 7333 LEO 2000 07/20/00 39.60 39.60 39.60 39.55 Latitude Latitude 39.55 39.55 39.50 07/27/00 Following a storm on 7/25 and 7/26, salinity in the bay decreased Salinity 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 31.50 Latitude 39.50 39.45 -74.50 -74.45 -74.40 39.45 39.50 -74.30 -74.35 -74.25 39.40 -74.50 -74.45 -74.40 -74.35 -74.30 -74.25 -74.20 -74.15 -74.10 -74.05 Longitude Longitude 39.60 39.60 Latitude 39.55 39.50 39.45 -74.50 -74.45 Latitude 39.55 39.55 Latitude 39.60 Optical front coincides with thermal and 39.45 -74.50 salinity fronts -74.40 -74.35 Longitude 6.500 7.000 7.500 8.000 8.500 9.000 39.45 Lower scattering offshore 39.50 -74.45 39.50 b555 Fairly uniform scattering in the 1.500 2.000 bay after 7/20, 2.500 3.000 -74.40 -74.35 slightly-74.30 elevated -74.25 3.500 4.000 4.500 Longitude following the 5.000 5.500 storm 6.000 -74.30 -74.25 39.40 -74.50 -74.45 -74.40 -74.35 -74.30 -74.25 -74.20 -74.15 -74.10 -74.05 Longitude NRL 7333 -74.375 -74.350 -74.325 -74.300 -74.275 -74.250 PHILLS I – LEO 15 07/21/2000 Tukerton, New Jersey 8 Meter Equirectangular Projection Red = 675nm Green = 548nm Blue = 440nm GREAT BAY 39.525 Rutgers Marine Station 39.500 NRL CODES 7212 & 7333 39.475 NRL 7333 Neural Network Approach to Bathymetry and Bottom Contribution Determine contribution of bottom reflectance to remote sensing reflectance, Neural Net trained using HYDROLIGHT Remove contribution and apply the deep water bio-optical algorithms Apply the SeaWIFS, MODIS and Phills For shallow water pixels, attempt to associate in situ SPMR and AC-9 calculations of bottom contribution with SeaWiFS Rrs. Visualize spatial and spectral variability maps to aid in determining bottom contribution. SeaWIFS Chlorophyll NRL 7333 Neural Network Approach to Bathymetry and Bottom Contribution Map optical/physical depth ratios: red= k412/z, green=k510/z, blue=k670/z for spectral visualization. Use empirical eigenfunction analysis conjointly with spectral analysis to determine bottom contributions. HYDROLIGHT to produce neural network training sets based on Tampa Bay AC-9 data. NRL 7333 Correlation Lengths of Optical Properties Variogram Analysis A geostatistical technique to determine spatial correlation scales; a plot of semivariance vs. lag distance is a variogram. (h) = 1 2N(h) N(h) i=1 [z(xi) - z(xi + h)]2 where z(x) is a regionalized variable and h is the separation vector (lag). Correlation length = 48 km (twice sill length) Chlorophyll data vs. distance along transect variogram analysis Semivariance vs. lag distance NRL 7333 Variogram Analysis - Spatial/Temporal 1 line (line #10 in previous analysis), 41 images (SeaWiFS, 8/9/98-12/9/98) Temporal Sequence Results of Temporal Variogram Analysis Correlation Length vs. Time (line #10) 120 SeaWiFS-Extracted Chlorophyll Values Along Transect, 1 Week Period in November 1998 2.2 1.8 Correlation Length (km) Nov 7 Nov 8 Nov 10 Nov 12 Nov 13 Nov 15 2.0 1.4 3 Chlorophyll (mg/m ) 1.6 1.2 100 80 60 40 1.0 0.8 20 0.6 0.4 Aug 1 Aug 21 Sep 10 Sep 30 Oct 20 Nov 9 Nov 29 Date 0.2 0.0 0 50 100 150 200 Pixel Number Along Transect Two dominant scales: 90-120 km 30-60 km NRL 7333 Variogram Analysis - Temporal 2 points (Tampa, Charlotte), 41 images (SeaWiFS, 8/9/98-12/9/98) Temporal Variogram Analysis Chlorophyll Data from SeaWiFS Chlorophyll Concentration vs. Time 1.4 1.2 0.10 Tampa Bay Charlotte Harbor Tampa Bay Charlotte Harbor 16 days 0.08 3 Chlorophyll (mg/m ) 1.0 Semivariance 0.8 0.6 0.06 0.04 0.4 12 days 0.02 0.2 0.0 Aug 1 0.00 Aug 21 Sep 10 Sep 30 Oct 20 Date Nov 9 Nov 29 0 10 20 30 40 50 Time (days) Roughly a 2 week correlation time scale NRL 7333 Correlation Lengths – West Florida Shelf Correlation Scales • two dominant spatial scales were observed near Tampa Bay: 30-60 km and 90-120 km; the longer scale may be associated with physical processes in the transition/frontal zone and the shorter scale with biological processes near the coast and seaward of the front. • A temporal correlation scale of roughly 2 weeks was observed; this frequency may be associated with the spring/neap tidal frequency or wind forcing and episodic upwelling events. NRL 7333 VSF – Russian Instrument 10 Ln(phf) Ln(phf-std) Ln(phf+std) Mean and SD Average Light scattering Function 5 phfs-new.dat LEO15 - 2001 ~800 Phase Functions 0 -5 -10 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Square Root of scattering Angle NRL 7333 bb to b from the Volume Scattering Coefficient 0.04 0.3 LEO – 15 0.035 bB_LEO15 bB_Petz bB_LEO15-1 bB_Mank bB_Petz bB_Mank bB_LEO15-0 0.25 Backscattering Coefficient Backscattering Coefficient, 1/m 0.03 bB(b).dat LEO15 experiment July-August 2001 bB(b).dat 0.2 0.025 0.02 0.15 0.015 0.1 0.01 0.05 0.005 0 0 0 0 2 0.5 4 1 6 1.5 Beam Scattering Coeff icient, 1/m Beam scattering Coef f icient 8 2 2.5 3 NRL 7333 Upcoming experiments May 2002 – Northern Gulf of Mexico Phills 2 ships Chlorophyll NRL 7333 Collaborative Efforts 1. Phills – SeaWIFS – MODIS processing and analyses 1. Algorithm development and testing 2. Validation data sets 2. Correlation Scales of Optics along the West Florida Shelf 3. Particle Size distribution – LEO – link with the optics 1. Organic and in organic 4. Changes in the Volume Scattering Function -LEO 1. Link the remote sensing reflectance 5. CDOM algorithms and links with salinity – LEO – WSF 6. Hyperspectral separation of Bottom/ Depth / IOP 1. SeaWIFS , MODIS and Phills 7. Interaction / assimilation of Satellite bio-optics with Modeled processes NRL 7333 Papers and Presentations Gould, R.W., Jr., R.A. Arnone, and M. Sydor. “ Absorption, scattering, and particle size relationships in coastal waters: Testing a new reflectance algorithm,” Journal of Coastal Research, 17(2): 328-341 2001 Arnone, R.A. and R.W. Gould. “Mapping Coastal Processes with Optical Signatures.” Backscatter, 12(1): 17-24 2001 Gould, R.W., Jr., and R.A. Arnone. Coastal optical properties estimated from airborne sensors. Remote Sensing of Environment, accepted. 2001 Johnson, D.R. Weidemann, A.D., R.A. Arnone and C.O Davis., The Chesapeake Bay Outflow Plume and Coastal Upwelling Events Optical /Physical Properties” Journal of Geophysical Research June 2001 Haltrin, V.I., O.V. Kopelvich, R.W. Gould, Jr., R.A. Arnone, D.R. Johnson, and A.D. Weidemann. Three-component light scattering model of coastal seawater. International Symposium on Optical Science and Technology, SPIE 46th Annual Meeting, San Diego, CA, 29 July - 3 August, 2001 (Abstract). Wood, A.M., W.K.W. Li, R. Arnone, R. Gould, and S. Lohrenz. Optical biogeography of Prochlorococcus and phycoerythrin-containing picocyanobacteria on the West Florida Shelf. Phcological Society of America Annual Meeting, Estes Park, Colorado, 24-28 June, 2001. Lohrenz, S.E., , R.W. Gould, and R.A. Arnone. Evaluation of an ocean color algorithm for retrieval of optical properties and biogeochemical constituents in West Florida Shelf coastal waters. Annual SeaWiFS Science Team Meeting, San Diego, California, May 2001. Gould, R.W., Jr., R.A. Arnone, W.A. Goode, S.D. Ladner, W.J. Rhea, R.H. Stavn, and O.M. Schofield. Particle size, concentration, and optical scattering relationships off coastal New Jersey. The Oceanography Society Biennial Scientific Meeting, April 2-5, 2001, Miami Florida. Oceanography, 14(1): 23 (Abstract). Ladner, S.D., R.W. Gould, Jr., R.A. Arnone, W.A. Goode, J.L. Miller, and W. Snyder. Estimating salinity from CDOM absorption off coastal New Jersey. The Oceanography Society Biennial Scientific Meeting, April 2-5, 2001, Miami Florida. Oceanography, 14(1): 32 (Abstract). Weidemann, A., R.W. Gould, Jr., W.S. Pegau, E. Boss, G. Korotaev, and X. Zhang. Towards closure of the backscattering coefficient. The Oceanography Society Biennial Scientific Meeting, April 2-5, 2001, Miami Florida. Oceanography, 14(1): 57 (Abstract). Twardowski, M.S., R.A. Arnone, A.D. Weidemann, R. Gould, V. Haltrin, C. Davis, and W. Snyder. Progress in the development of a remote sensing algorithm for the determination of total suspended matter and its components. ASLO 2001 Aquatic Sciences Meeting, Albuquerque, NM, NRL 7333 12-16 February, 2001. Papers and Presentations Arnone, R.A., R.W. Gould, Jr., C.O. Chan, and S.D. Ladner. Uncoupling CDOM, scattering and chlorophyll properties in coastal waters using SeaWiFS ocean color. Proceedings, Oceans from Space 2000, Venice, Italy, 9-13 October, 2000 (Abstract). Arnone, R.A., R.W. Gould, Jr., A.D. Weidemann, S.C. Gallegos, and V.I. Haltrin. Using SeaWiFS ocean color absorption, backscattering properties to discriminate coastal waters. Proceedings, Ocean Optics XV, Monaco, 16-20 October, 2000 (Abstract). Ladner, S.D., R.A. Arnone, R.W. Gould, Jr., and P.M. Martinolich. Evaluation of SeaWiFS bio-optical products in coastal regions. Abstract Published in AGU Fall Meeting 2001, San Francisco, CA, 10-14 December, 2001. Martinolich, P.M., R.A. Arnone, R.W. Gould, Jr., and S.D. Ladner. Coupling MODIS and SeaWiFS optical products. Abstract Published in AGU Fall Meeting 2001, San Francisco, CA, 10-14 December, 2001. Arnone, R.A., R.W. Gould, Jr., P.M. Martinolich, and S.D. Ladner. Improved algorithms for retrieving optical properties in coastal waters from ocean color sensors. Abstract Published in AGU Fall Meeting 2001, San Francisco, CA, 10-14 December, 2001. Tozzi, S, O. Schofield, M. Moline, T. Bergmann, R.A. Arnone, “Variability in measured and Modeled Remote Sensing Reflectance for Coastal Wate at LEO-15”, Abstract Published in Oceans from Space 2000, Venice, Italy, 9-13 October, 2000. Tozzi, S., O. Schofield, M. Moline, T. Bergmann, ., M. Crowley, R.A. Arnone “Variability in Measured and Modeled Remote Sensing Reflectance and Comparison of SeaWIFS and In-Situ CHL a Distribution for Coastal Waters at LEO-15” Abstract Published in Ocean Optics XV, Monaco, 1620 October, 2000. Arnone, R.A., R.W. Gould, Jr., C.O. Chan, and S.D. Ladner. Uncoupling CDOM, scattering and chlorophyll properties in coastal waters using SeaWiFS ocean color. Abstract Published to Oceans from Space 2000, Venice, Italy, 9-13 October, 2000.(Invited talk) Arnone, R.A., R.W. Gould, Jr., A.D. Weidemann, S.C. Gallegos, and V.I. Haltrin. Using SeaWiFS ocean color absorption, backscattering properties to discriminate coastal waters. Abstract published Ocean Optics XV, Monaco, 16-20 October, 2000. Johnson, D.R. R.A. Arnone and J. Miller “ The Role of Outflow Plumes and Wind Forcing in Distributing Biological Products on the Continental Shelf” European Geophysical Society XXVI General Assembly, Dec 1, 2000 Johnson, D.R. R.A. Arnone J. Miller , A. Weidemann, and V.I. Haltrin ‘ A Comparison of optical Signatures in estuarine outflow plumes” ONW— 2001 International Conference in St. Petersburg Russia, 25 Sept, 2001 NRL 7333 END NRL 7333 Inputs: Bathymetry z max – Depth of Chl – max S – Width of Gaussian Surface Chlorophyll Intensity of Chl max A Mobile Bay 0 Ms Delta 2000m B Chlorophyll mg/l3 Vertical profile Based on surface Distribution NRL 7333 Coast Cross Section from Mobile Bay Offshore Mobile Bay 0 0 Chlorophyll max Chlorophyll max 100 2000 200 Chlorophyll a NRL 7333 Temporal Variability - Surface/Subsurface Coupling C 0 Leg 2 27.0 26.5 -20 Depth (m) 10/29-10/30 26.0 25.5 25.0 -40 24.5 24.0 Temperature -60 -80 0 0 23.5 23.0 20 40 60 80 100 120 Upwelling 22.5 on West 22.0 140Florida 160 Shelf PSU 36.50 36.25 36.00 35.75 35.50 35.25 35.00 34.75 34.50 34.25 34.00 33.75 33.50 33.25 33.00 Depth (m) -20 -40 Salinity -60 -80 0 20 40 60 80 100 Distance (km) 120 140 160 NRL 7333 Temporal Variability - Surface/Subsurface Coupling C 0 Leg 1 -20 Depth (m) 10/19-10/20 -40 -60 Temperature -80 -100 0 0 20 40 60 80 100 120 140 160 PSU 36.50 36.25 -20 Depth (m) 27.5 27.0 26.5 26.0 25.5 25.0 24.5 24.0 23.5 23.0 22.5 22.0 21.5 21.0 20.5 36.00 35.75 -40 35.50 35.25 -60 35.00 34.75 Salinity -80 34.50 34.25 34.00 -100 33.75 33.50 0 20 40 60 80 100 Distance (km) 120 140 160 NRL 7333 SeaWifs Visibility at Node A June 28 July 5 July 7 Daily Changes in backscatter (550 ) at LEO 15. July 16 July 18 July 23 NRL 7333 Data Collected – LEO 2000, 2001 LEO 2000 Date Station 7/17/00 7/18/00 7/19/00 7/20/00 7/21/00 7/22/00 7/24/00 7/25/00 7/26/00 7/27/00 7/28/00 TOTAL 2 3 2 8 4 7 12 7 3 10 9 67 ASD Rrs 2 3 2 4 4 7 4 4 0 9 5 44 LEO 2001 Date Station Optics Profile 7/21/01 1 1 7/22/01 2 2 7/23/01 9 9 7/25/01 2 1 7/27/01 2 3 7/29/01 1 0 7/31/01 5 2 8/1/01 9 6 8/2/01 5 2 TOTAL 36 26 Spectrix Rrs 2 3 2 2 4 4 2 0 0 0 0 19 HTSRB Hydroscat AC9/CTD AC9 LPC (MODAPS) Dangle 1 0 2 3 3 3 0 0 2 2 0 8 4 4 5 0 0 7 0 0 12 0 0 7 0 0 5 9 0 10 5 5 8 24 11 69 2 3 2 1 4 7 4 0 0 0 0 23 0 3 0 7 4 7 4 0 0 9 5 39 Rrs Pad Absorption 0 0 2 1 1 1 5 4 3 (chl a) 1 0 1 1 1 0 3 4 3 Sun Photometer 0 0 3 1 2 0 5 5 3 0 0 2 1 1 1 5 4 3 0 0 0 1 2 1 5 9 4 14 19 17 17 32 HPLC TSS Flow-Thru not station specific 15 15 LPC Flow-Thru 0 0 9 2 2 1 5 9 5 0 0 9 2 2 1 5 9 5 not station specific 12 33 33 12 NRL 7333 0 VSF – Russian Instrument 10 Ln(phf) Ln(pmin) Ln(pmax) -1 Average Light scattering Function -2 LEO15 - 2001 Average Light scattering Function 5 Mean Min Max Ln(phf) Ln(pmin) phfs-new.dat Ln(pmax) ~800 Phase Functions phfs-new.dat LEO15 - 2001 -3 ~800 Phase Functions -4 0 -5 -6 -5 -7 1.68 1.7 1.72 1.74 1.76 Square Root of scattering Angle -10 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Square Root of scattering Angle NRL 7333 0.3 Backscattering Coefficient, 1/m 0.25 bB_LEO15-1 bB_Petz bB_Mank bB_LEO15-0 bB(b).dat 0.2 0.15 0.1 0.05 0 0 2 4 6 8 Beam Scattering Coeff icient, 1/m NRL 7333 Variogram Analysis - Spatial 30 lines in an offshore sequence, 1 image (SeaWiFS, 10/28/98) Chlorophyll data vs. distance along transect variogram analysis Semivariance vs. lag distance NRL 7333