Transcript Slide 1

HYCODE - January 2002
Hyperspectral Applications
Ocean Optics
Naval Research laboratory
Stennis Space Center, MS
Robert Arnone
Rick Gould
Alan Weidemann
Vladimir Haltrin
Sherwin Ladner
Paul Martinolich
NRL 7333
Objectives:
•SeaWIFS / MODIS Coupled processing
•Time Series of Satellite image bio-optical products
•New IOP algorithms
•Phills processing for IOP
•Extending Surface RS optics to depth --- WFS
• Affect of Volume Scattering Function -- LEO
•on remote sensing algorithms
• Particle size and scattering distributions -- LEO
• Scales of Variability of optical processes. -- WSF
• Bottom contamination in remote sensing algorithms for IOP
NRL 7333
Time Series of West
Florida Shelf and
Leo 15 from 2000Present
SeaWIFS
Chl,
Adg
Atotal
Bb
Aphi
Go To www7333.nrlssc.navy.mil
NRL 7333
07/31/01 SeaWiFS Chlorophyll_oc4
0731
39.65
39.60
Y A xis Title
S1,2,3
7
39.55
6
39.50
5 4
39.45
39.40
39.35
-74.40
-74.35
-74.30
-74.25
-74.20
-74.15
-74.10
X Axis Title
Movie 2000chl
2000bb 2001chl
2000bb
NRL 7333
Matching
SeaWIFS and MODIS imagery
________
Similar 1 km scales from
2 satellites
Y = A + B * X
0.014
0.012
0.010
P aram eter
V alue E rror
-----------------------------------------------------------A
-1.37083E -4
2.11663E -4
B
1.02845
0.04952
-----------------------------------------------------------R
SD
N
P
-----------------------------------------------------------0.91134
8.45515E -4
90
< 0.0001
------------------------------------------------------------
SWF Rrs
Similar Optical properties
- k532 attenuation coefficient
0.008
0.006
0.004
(Extending SeaWIFS Near IR
Atm. Correction in coastal waters
to MODIS)
NRL 7333
0.002
0.000
0.000
0.002
0.004
0.006
0.008
ASD R rs
0.010
0.012
0.014
–
4.9
Leo – 15
Chlorophyll (
mg/l)
Landsat
30- m
0.0
Rutgers
Field Station
SeaWiFS
Node A
24.0
SST (C)
17.8
Particle size changes in the
Bay , at the mouth and offshore.
Affects the backscattering signature
And the bb/b relationship
SPOT
And the RRS ~ bb/ a+bb relationship NRL 7333
Leo-15 Particle Analysis
Stations 20-S04, 21-S04, 27-S08, and 28-S02
7
0(555) = 0.89
Log (particles per 100 ml)
6
Particle size
distributions
vary by area:
0(555) = 0.93
5
smallest particles offshore,
largest at bay mouth
(resuspension by tidal
currents)
4
0(555) = 0.94
3
LEO 2000
0(555) = 0.94
2
2
20-S04 (river), slope = -0.25977, R = 0.994
2
21-S04 (bay mouth), slope = -0.18115, R = 0.989
2
27-S08 (offshore), slope = -0.31890, R = 0.990
2
28-S02 (north bay), slope = -0.29421, R = 0.992
1
0
0
5
10
15
Particle Diameter (mm)
NRL 7333
LEO 2000
07/20/00
39.60
39.60
39.60
39.55
Latitude
Latitude
39.55
39.55
39.50
07/27/00
Following a
storm on 7/25
and 7/26,
salinity in the
bay decreased
Salinity
14.00
15.00
16.00
17.00
18.00
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
28.00
29.00
30.00
31.00
31.50
Latitude
39.50
39.45
-74.50
-74.45
-74.40
39.45
39.50
-74.30
-74.35
-74.25
39.40
-74.50 -74.45 -74.40 -74.35 -74.30 -74.25 -74.20 -74.15 -74.10 -74.05
Longitude
Longitude
39.60
39.60
Latitude
39.55
39.50
39.45
-74.50
-74.45
Latitude
39.55
39.55
Latitude
39.60
Optical front
coincides with
thermal and
39.45
-74.50
salinity fronts
-74.40
-74.35
Longitude
6.500
7.000
7.500
8.000
8.500
9.000
39.45
Lower scattering
offshore
39.50
-74.45
39.50
b555
Fairly uniform
scattering in the
1.500
2.000
bay after 7/20,
2.500
3.000
-74.40
-74.35
slightly-74.30
elevated -74.25 3.500
4.000
4.500
Longitude following the
5.000
5.500
storm
6.000
-74.30
-74.25
39.40
-74.50 -74.45 -74.40 -74.35 -74.30 -74.25 -74.20 -74.15 -74.10 -74.05
Longitude
NRL 7333
-74.375
-74.350
-74.325
-74.300
-74.275
-74.250
PHILLS I – LEO 15 07/21/2000
Tukerton, New Jersey
8 Meter Equirectangular Projection
Red = 675nm Green = 548nm Blue = 440nm
GREAT BAY
39.525
Rutgers Marine
Station
39.500
NRL CODES 7212 & 7333
39.475
NRL 7333
Neural Network Approach to Bathymetry
and Bottom Contribution





Determine contribution of
bottom reflectance to remote
sensing reflectance, Neural Net
trained using HYDROLIGHT
Remove contribution and apply
the deep water bio-optical
algorithms
Apply the SeaWIFS, MODIS
and Phills
For shallow water pixels,
attempt to associate in situ
SPMR and AC-9 calculations of
bottom contribution with
SeaWiFS Rrs.
Visualize spatial and spectral
variability maps to aid in
determining bottom
contribution.
SeaWIFS
Chlorophyll NRL 7333
Neural Network Approach to Bathymetry and
Bottom Contribution



Map optical/physical depth ratios:
red= k412/z, green=k510/z, blue=k670/z
for spectral visualization.
Use empirical eigenfunction analysis
conjointly with spectral analysis to
determine bottom contributions.
HYDROLIGHT to produce neural
network training sets based on Tampa
Bay AC-9 data.
NRL 7333
Correlation Lengths of Optical Properties
Variogram Analysis
A geostatistical technique to determine
spatial correlation scales; a plot of semivariance vs. lag distance is a variogram.
(h)
=
1
2N(h)
N(h)

i=1
[z(xi) - z(xi + h)]2
where z(x) is a regionalized variable and h is
the separation vector (lag).
Correlation length = 48 km
(twice sill length)
Chlorophyll data vs.
distance along transect
variogram
analysis
Semivariance vs.
lag distance
NRL 7333
Variogram Analysis - Spatial/Temporal
1 line (line #10 in previous analysis), 41 images (SeaWiFS, 8/9/98-12/9/98)
Temporal
Sequence
Results of Temporal Variogram Analysis
Correlation Length vs. Time (line #10)
120
SeaWiFS-Extracted Chlorophyll Values
Along Transect, 1 Week Period in November 1998
2.2
1.8
Correlation Length (km)
Nov 7
Nov 8
Nov 10
Nov 12
Nov 13
Nov 15
2.0
1.4
3
Chlorophyll (mg/m )
1.6
1.2
100
80
60
40
1.0
0.8
20
0.6
0.4
Aug 1
Aug 21 Sep 10 Sep 30 Oct 20
Nov 9
Nov 29
Date
0.2
0.0
0
50
100
150
200
Pixel Number Along Transect
Two dominant scales:
90-120 km
30-60 km
NRL 7333
Variogram Analysis - Temporal
2 points (Tampa, Charlotte), 41 images (SeaWiFS, 8/9/98-12/9/98)
Temporal Variogram Analysis
Chlorophyll Data from SeaWiFS
Chlorophyll Concentration vs. Time
1.4
1.2
0.10
Tampa Bay
Charlotte Harbor
Tampa Bay
Charlotte Harbor
16 days
0.08
3
Chlorophyll (mg/m )
1.0
Semivariance
0.8
0.6
0.06
0.04
0.4
12 days
0.02
0.2
0.0
Aug 1
0.00
Aug 21 Sep 10 Sep 30 Oct 20
Date
Nov 9
Nov 29
0
10
20
30
40
50
Time (days)
Roughly a 2 week correlation time scale
NRL 7333
Correlation Lengths – West Florida Shelf
Correlation Scales
• two dominant spatial scales were observed near Tampa Bay:
30-60 km and 90-120 km; the longer scale may be
associated with physical processes in the transition/frontal
zone and the shorter scale with biological processes near the
coast and seaward of the front.
• A temporal correlation scale of roughly 2 weeks was
observed; this frequency may be associated with the
spring/neap tidal frequency or wind forcing and episodic
upwelling events.
NRL 7333
VSF – Russian
Instrument
10
Ln(phf)
Ln(phf-std)
Ln(phf+std)
Mean and SD
Average Light scattering Function
5
phfs-new.dat
LEO15 - 2001
~800 Phase Functions
0
-5
-10
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
Square Root of scattering Angle
NRL 7333
bb to b from the Volume Scattering Coefficient
0.04
0.3
LEO – 15
0.035
bB_LEO15
bB_Petz
bB_LEO15-1
bB_Mank
bB_Petz
bB_Mank
bB_LEO15-0
0.25
Backscattering Coefficient
Backscattering Coefficient, 1/m
0.03
bB(b).dat
LEO15 experiment
July-August 2001
bB(b).dat
0.2
0.025
0.02
0.15
0.015
0.1
0.01
0.05
0.005
0
0
0
0
2
0.5
4
1
6
1.5
Beam Scattering Coeff icient, 1/m
Beam scattering Coef f icient
8
2
2.5
3
NRL 7333
Upcoming experiments
May 2002 – Northern Gulf of Mexico
Phills
2 ships
Chlorophyll
NRL 7333
Collaborative Efforts
1. Phills – SeaWIFS – MODIS processing and analyses
1. Algorithm development and testing
2. Validation data sets
2. Correlation Scales of Optics along the West Florida Shelf
3. Particle Size distribution – LEO – link with the optics
1. Organic and in organic
4. Changes in the Volume Scattering Function -LEO
1. Link the remote sensing reflectance
5. CDOM algorithms and links with salinity – LEO – WSF
6. Hyperspectral separation of Bottom/ Depth / IOP 
1. SeaWIFS , MODIS and Phills
7. Interaction / assimilation of Satellite bio-optics
with Modeled processes
NRL 7333
Papers and Presentations
Gould, R.W., Jr., R.A. Arnone, and M. Sydor. “ Absorption, scattering, and particle size relationships in coastal waters: Testing a new reflectance
algorithm,” Journal of Coastal Research, 17(2): 328-341 2001
Arnone, R.A. and R.W. Gould. “Mapping Coastal Processes with Optical Signatures.” Backscatter, 12(1): 17-24 2001
Gould, R.W., Jr., and R.A. Arnone. Coastal optical properties estimated from airborne sensors. Remote Sensing of Environment, accepted. 2001
Johnson, D.R. Weidemann, A.D., R.A. Arnone and C.O Davis., The Chesapeake Bay Outflow Plume and Coastal Upwelling Events Optical
/Physical Properties” Journal of Geophysical Research June 2001
Haltrin, V.I., O.V. Kopelvich, R.W. Gould, Jr., R.A. Arnone, D.R. Johnson, and A.D. Weidemann. Three-component light scattering model of
coastal seawater. International Symposium on Optical Science and Technology, SPIE 46th Annual Meeting, San Diego, CA, 29 July - 3 August,
2001 (Abstract).
Wood, A.M., W.K.W. Li, R. Arnone, R. Gould, and S. Lohrenz. Optical biogeography of Prochlorococcus and phycoerythrin-containing
picocyanobacteria on the West Florida Shelf. Phcological Society of America Annual Meeting, Estes Park, Colorado, 24-28 June, 2001.
Lohrenz, S.E., , R.W. Gould, and R.A. Arnone. Evaluation of an ocean color algorithm for retrieval of optical properties and biogeochemical
constituents in West Florida Shelf coastal waters. Annual SeaWiFS Science Team Meeting, San Diego, California, May 2001.
Gould, R.W., Jr., R.A. Arnone, W.A. Goode, S.D. Ladner, W.J. Rhea, R.H. Stavn, and O.M. Schofield. Particle size, concentration, and optical
scattering relationships off coastal New Jersey. The Oceanography Society Biennial Scientific Meeting, April 2-5, 2001, Miami Florida.
Oceanography, 14(1): 23 (Abstract).
Ladner, S.D., R.W. Gould, Jr., R.A. Arnone, W.A. Goode, J.L. Miller, and W. Snyder. Estimating salinity from CDOM absorption off coastal New
Jersey. The Oceanography Society Biennial Scientific Meeting, April 2-5, 2001, Miami Florida. Oceanography, 14(1): 32 (Abstract).
Weidemann, A., R.W. Gould, Jr., W.S. Pegau, E. Boss, G. Korotaev, and X. Zhang. Towards closure of the backscattering coefficient. The
Oceanography Society Biennial Scientific Meeting, April 2-5, 2001, Miami Florida. Oceanography, 14(1): 57 (Abstract).
Twardowski, M.S., R.A. Arnone, A.D. Weidemann, R. Gould, V. Haltrin, C. Davis, and W. Snyder. Progress in the development of a remote
sensing algorithm for the determination of total suspended matter and its components. ASLO 2001 Aquatic Sciences Meeting, Albuquerque, NM,
NRL 7333
12-16 February, 2001.
Papers and Presentations
Arnone, R.A., R.W. Gould, Jr., C.O. Chan, and S.D. Ladner. Uncoupling CDOM, scattering and chlorophyll properties in coastal waters using
SeaWiFS ocean color. Proceedings, Oceans from Space 2000, Venice, Italy, 9-13 October, 2000 (Abstract).
Arnone, R.A., R.W. Gould, Jr., A.D. Weidemann, S.C. Gallegos, and V.I. Haltrin. Using SeaWiFS ocean color absorption, backscattering properties
to discriminate coastal waters. Proceedings, Ocean Optics XV, Monaco, 16-20 October, 2000 (Abstract).
Ladner, S.D., R.A. Arnone, R.W. Gould, Jr., and P.M. Martinolich. Evaluation of SeaWiFS bio-optical products in coastal regions. Abstract
Published in AGU Fall Meeting 2001, San Francisco, CA, 10-14 December, 2001.
Martinolich, P.M., R.A. Arnone, R.W. Gould, Jr., and S.D. Ladner. Coupling MODIS and SeaWiFS optical products. Abstract Published in AGU
Fall Meeting 2001, San Francisco, CA, 10-14 December, 2001.
Arnone, R.A., R.W. Gould, Jr., P.M. Martinolich, and S.D. Ladner. Improved algorithms for retrieving optical properties in coastal waters from
ocean color sensors. Abstract Published in AGU Fall Meeting 2001, San Francisco, CA, 10-14 December, 2001.
Tozzi, S, O. Schofield, M. Moline, T. Bergmann, R.A. Arnone, “Variability in measured and Modeled Remote Sensing Reflectance for Coastal Wate
at LEO-15”, Abstract Published in Oceans from Space 2000, Venice, Italy, 9-13 October, 2000.
Tozzi, S., O. Schofield, M. Moline, T. Bergmann, ., M. Crowley, R.A. Arnone “Variability in Measured and Modeled Remote Sensing Reflectance
and Comparison of SeaWIFS and In-Situ CHL a Distribution for Coastal Waters at LEO-15” Abstract Published in Ocean Optics XV, Monaco, 1620 October, 2000.
Arnone, R.A., R.W. Gould, Jr., C.O. Chan, and S.D. Ladner. Uncoupling CDOM, scattering and chlorophyll properties in coastal waters using
SeaWiFS ocean color. Abstract Published to Oceans from Space 2000, Venice, Italy, 9-13 October, 2000.(Invited talk)
Arnone, R.A., R.W. Gould, Jr., A.D. Weidemann, S.C. Gallegos, and V.I. Haltrin. Using SeaWiFS ocean color absorption, backscattering properties
to discriminate coastal waters. Abstract published Ocean Optics XV, Monaco, 16-20 October, 2000.
Johnson, D.R. R.A. Arnone and J. Miller “ The Role of Outflow Plumes and Wind Forcing in Distributing Biological Products on the Continental
Shelf” European Geophysical Society XXVI General Assembly, Dec 1, 2000
Johnson, D.R. R.A. Arnone J. Miller , A. Weidemann, and V.I. Haltrin ‘ A Comparison of optical Signatures in estuarine outflow plumes” ONW—
2001 International Conference in St. Petersburg Russia, 25 Sept, 2001
NRL 7333
END
NRL 7333
Inputs:
Bathymetry
z max – Depth of Chl – max
S – Width of Gaussian
Surface Chlorophyll
Intensity of Chl max
A
Mobile Bay
0
Ms Delta
2000m
B
Chlorophyll mg/l3
Vertical profile
Based on surface
Distribution
NRL 7333
Coast
Cross Section from Mobile Bay Offshore
Mobile Bay
0
0
Chlorophyll
max
Chlorophyll
max
100
2000
200
Chlorophyll a
NRL 7333
Temporal Variability - Surface/Subsurface Coupling
C
0
Leg 2
27.0
26.5
-20
Depth (m)
10/29-10/30
26.0
25.5
25.0
-40
24.5
24.0
Temperature
-60
-80
0
0
23.5
23.0
20
40
60
80
100
120
Upwelling 22.5
on West 22.0
140Florida
160 Shelf
PSU
36.50
36.25
36.00
35.75
35.50
35.25
35.00
34.75
34.50
34.25
34.00
33.75
33.50
33.25
33.00
Depth (m)
-20
-40
Salinity
-60
-80
0
20
40
60
80
100
Distance (km)
120
140
160
NRL 7333
Temporal Variability - Surface/Subsurface Coupling
C
0
Leg 1
-20
Depth (m)
10/19-10/20
-40
-60
Temperature
-80
-100
0
0
20
40
60
80
100
120
140
160
PSU
36.50
36.25
-20
Depth (m)
27.5
27.0
26.5
26.0
25.5
25.0
24.5
24.0
23.5
23.0
22.5
22.0
21.5
21.0
20.5
36.00
35.75
-40
35.50
35.25
-60
35.00
34.75
Salinity
-80
34.50
34.25
34.00
-100
33.75
33.50
0
20
40
60
80
100
Distance (km)
120
140
160
NRL 7333
SeaWifs Visibility at
Node A
June 28
July 5
July 7
Daily Changes in backscatter (550 ) at LEO 15.
July 16
July 18
July 23
NRL 7333
Data Collected – LEO 2000, 2001
LEO 2000
Date Station
7/17/00
7/18/00
7/19/00
7/20/00
7/21/00
7/22/00
7/24/00
7/25/00
7/26/00
7/27/00
7/28/00
TOTAL
2
3
2
8
4
7
12
7
3
10
9
67
ASD
Rrs
2
3
2
4
4
7
4
4
0
9
5
44
LEO 2001
Date Station Optics
Profile
7/21/01
1
1
7/22/01
2
2
7/23/01
9
9
7/25/01
2
1
7/27/01
2
3
7/29/01
1
0
7/31/01
5
2
8/1/01
9
6
8/2/01
5
2
TOTAL
36
26
Spectrix
Rrs
2
3
2
2
4
4
2
0
0
0
0
19
HTSRB
Hydroscat
AC9/CTD
AC9 LPC
(MODAPS) Dangle
1
0
2
3
3
3
0
0
2
2
0
8
4
4
5
0
0
7
0
0
12
0
0
7
0
0
5
9
0
10
5
5
8
24
11
69
2
3
2
1
4
7
4
0
0
0
0
23
0
3
0
7
4
7
4
0
0
9
5
39
Rrs
Pad
Absorption
0
0
2
1
1
1
5
4
3
(chl a)
1
0
1
1
1
0
3
4
3
Sun
Photometer
0
0
3
1
2
0
5
5
3
0
0
2
1
1
1
5
4
3
0
0
0
1
2
1
5
9
4
14
19
17
17
32
HPLC TSS
Flow-Thru
not station specific
15
15
LPC
Flow-Thru
0
0
9
2
2
1
5
9
5
0
0
9
2
2
1
5
9
5
not station specific
12
33
33
12
NRL 7333
0
VSF –
Russian
Instrument
10
Ln(phf)
Ln(pmin)
Ln(pmax)
-1
Average Light scattering Function
-2
LEO15 - 2001
Average Light scattering Function
5
Mean
Min
Max
Ln(phf)
Ln(pmin)
phfs-new.dat
Ln(pmax)
~800 Phase Functions
phfs-new.dat
LEO15 - 2001
-3
~800 Phase Functions
-4
0
-5
-6
-5
-7
1.68
1.7
1.72
1.74
1.76
Square Root of scattering Angle
-10
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
Square Root of scattering Angle
NRL 7333
0.3
Backscattering Coefficient, 1/m
0.25
bB_LEO15-1
bB_Petz
bB_Mank
bB_LEO15-0
bB(b).dat
0.2
0.15
0.1
0.05
0
0
2
4
6
8
Beam Scattering Coeff icient, 1/m
NRL 7333
Variogram Analysis - Spatial
30 lines in an offshore sequence, 1 image (SeaWiFS, 10/28/98)
Chlorophyll data vs.
distance along transect
variogram
analysis
Semivariance vs.
lag distance
NRL 7333