Transcript Slide 1
Evidence for Photolytic Production of Cyclic-N3 Dr. Petros Samartzis, Dr. Nils Hansen, Yuanyuan Ji, Alec M. Wodtke Dept. of Chemistry and Biochemistry UCSB, Santa Barbara CA 93106 Air Force Office of Scientific Research Outline Background Poly-nitrogen allotropes are rare… …ring structures even more so. Three experiments provide evidence for photochemical production of cyclic N3 Velocity Map Imaging Photofragmentation translational spectroscopy Thermochemistry of all molecules made from one Cl atom and three N atoms. Primary and Secondary decomposition pathways resulting from ClN3 photolysis VUV synchrotron photoionization based photofragmentation translational spectroscopy Two photo-ionization thresholds for N3 Some background on all Nitrogen Chemistry …especially rings The Nitrogen atom as a chemical building block N is iso-electronic with CH If benzene, HC HC H C C H Then, why not Hexa-azabenzene CH N CH N N N N N Basic Problem of Stability with allNitrogen Ring Allotropes N << 0 N H C HC N N 0 CH HC N CH + + N CH Theory on Cyclic Nitrogen Allotropes T. J. Lee et al., J. Chem. Phys. 94, 1215-1221 (1991). W. J. Lauderdale et al., J. Phys. Chem. 96, 1173-1178 (1992). D. R. Yarkony, J. Am. Chem. Soc. 114, 5406-5411 (1992). R. Klein et al., Chem. Pap.-Chem. Zvesti 47, 143-148 (1993). K. M. Dunn et al., J. Chem. Phys. 102, 4904-4908 (1995). M. N. Glukhovtsev et al., Inorg. Chem. 35, 7124-7133 (1996). A. A. Korkin et al., J. Phys. Chem. 100, 5702-5714 (1996). M. T. Nguyen et al., Chem. Berichte 129, 1157-1159 (1996). J. Wasilewski, J. Chem. Phys. 105, 10969-10982 (1996). A. Larson et al., J. Chem. Soc.-Faraday Trans. 93, 2963-2966 (1997). M. L. Leininger et al., J. Phys. Chem. A 101, 4460-4464 (1997). M. Bittererova et al., J. Phys. Chem. A 104, 11999-12005 (2000). M. Bittererova et al., Chem. Phys. Lett. 340, 597-603 (2001). M. Bittererova et al., Chem. Phys. Lett. 347, 220-228 (2001). T. J. Lee et al., Chem. Phys. Lett. 345, 295-302 (2001). H. Ostmark et al., J. Raman Spectrosc. 32, 195-199 (2001). M. Tobita et al., J. Phys. Chem. A 105, 4107-4113 (2001). M. Bittererova et al., J. Chem. Phys. 116, 9740-9748 (2002). T. J. Lee et al., Chem. Phys. Lett. 357, 319-325 (2002). Many interesting allotropes have been predicted by theory Stable Stable ? Hexa-aza diazide 189 kcal/mol Hexa-azabenzene 212 kcal/mole ? Hexa-aza Dewar-benzene 244 kcal/mol ? Motoi Tobita and Rodney J. Bartlett J. Phys. Chem. A 2001, 105, 4107-4113 Hexa-aza Prismane 323 kcal/mol Hexa-aza bicyclopropenyl 245 kcal/mol N8 N10 Poly-Nitrogen Chemistry Limited number of allotropes belonging to this family have been synthesized and identified. N≡N -0.11 N N=N=N N=N=N- N N +1 0.22 N 0.33 N N5+ Synthesis proved by IR and crystal structures. N5- Identified in fragmentation of electrospray ionization mass spectra. Tetra-azahedrane (tetrazete): The search continues Obeys the octet rule. Dissociation to 2N2 releases 760 kJ/mol. (Interesting HEDM candidate) Must proceed over 250 kJ/mole barrier to be spinallowed Spin-forbidden channels have lower barriers… Produce excited electronic state products N N N N Matrix Isolation Nitrogen discharges quenched on cold surface IR spectra recorded Compared to theoretical predictions Very recent work from Radziszewski appears promising Theoretical simulation of isotopic IR spectrum of Td - N4 Cyclic-N3: the “simplest” all-Nitrogen ring allotrope and precursor to Td-N4 C2v Symmetry Bound by 1 eV if “spin conserved” @1 eV barrier to linearization precursor to tetra-azahedrane Bittererova, Östmark and Brinck, J. Chem. Phys. 116 9740 (2002) Pseudo-rotation in cyclic N3 Energy minimum exhibits C2v symmetry Shallow barrier through to other isomers. Barrier lower than zero-point energy Molecule exhibits pseudo-rotation Photochemical angular distribution will be broadened All N-atoms are equally likely to leave Babikov, Morokuma, Zhang… several recent papers have appeared. Geometric Phase Effect GBO BO ׀ + + 2A 2 expi 23 2A 2 2B 1 2B 1 + ׀ 2A 2 Babikov et al. , J. Chem. Phys., 121, (24), 22 December 2004 + + 2B 1 Vibrational Wave-functions With and Without the Geometric Phase Effect #1: BO A1 1310 cm-1 #1: GPE , E, 1325cm-1 #2: E 1364 cm-1 #2: GPE, A1 1401 cm-1 #3: E 1561 cm-1 #3: GPE, A2, 1502 cm-1 Babikov et al. , J. Chem. Phys., 121, (24), 22 December 2004 Up to now, no conclusive experimental evidence Surprisingly, no effort has been made to exploit UV photolysis to make this metastable compound. Theoretical predictions about cyclic N3 Eneryg (kcal/mol) 63.38 (65.72) D0_C2v_TS 70.00 62.18 (64.85) D0_Cs_TS 59.10 MSX_C2v_2A2/4B1_1 58.90 58.56 60.00 N2 +N(2D) MSX_C2v_2B1/4A2 59.64 (61.76) D0_Cv_TS MSX_Cs_2A"/4A"_1 52.47 56.49 (58.98) N2+N(2D) MSX_Cs_2A"/4A"_2 50.00 CI(2B1/2A2) 45.35 45.86 (48.69) Q1_Cs_TS 47.39 MSX_C2v_2A2/4B1_2 40.00 43.82 (46.18) Q1_4B1 30.53 (33.09) 30.00 D0_2A2_1 D0_2B1 D0_2B1 30.28 (32.20) 30.28 (32.20) 20.00 10.00 -0.23 (2.26) 0.00 N2+N(4S) linear N3 0.00 (0.00) Figure 3, JCP, Zhang Zhang, Morokuma and Wodtke (in press) N2+N(4S) Three experimental approaches Velocity Map Imaging Photofragmentation translational spectroscopy Thermochemistry of all molecules made from one Cl atom and three N atoms. Primary and Secondary decomposition pathways resulting from ClN3 photolysis VUV synchrotron photoionization based photofragmentation translational spectroscopy Two photo-ionization thresholds for N3 Velocity Map imaging of Cl from ClN3→Cl+N3 …thermochemistry of Cl/N/N/N Velocity Map Ion Imaging Photolysis-Detection Ew Laser Molecular Beam 3D-Product Distribution 2D-Projection Inverse-Abel Transformation 3D-Distribution 2D-Projection: Cut through 3D-Distribution: M. C. Escher Inverse Abel-Transformation Using BASEX alla Reisler N2O Photodissociation N2O + h N2 (X 1g+) + O (1D2) Velocity Map 50 55 b ~ -1 60 65 75 70 52 202.6 w/o centroiding w/ centroiding 202.8 203.0 80 56 203.2 60 203.4 v' = 0 N' v' = 1 85 65 71 N' 203.6 203.8 Wavelength / nm “Improved two-dimensional product imaging: The real-time ion-counting method”, Chang BY, Hoetzlein RC, Mueller JA, Geiser JD, Houston PL, RSI 69 (4): 1665-1670 APR 1998 “Photodissociation of N2O: J-dependent anisotropy revealed in N2 photofragment images”, Neyer DW, Heck AJR, Chandler DW, JCP, 110 (7): 3411-3417 FEB 15 1999 Comparison to Cornell Experiments Determines the N2-O bond energy within several cm-1 N2O (0,1,0) N2O (0,0,0) Santa Barbara machine Cornell machine* “Improved two-dimensional product imaging: The real-time ion-counting method”, Chang BY, Hoetzlein RC, Mueller JA, Geiser JD, Houston PL, RSI 69 (4): 1665-1670 APR 1998 * ClN3 absorption spectrum 1A”1A’ 3.1 eV S2 Theoretical calculations of Zhang and Morokuma S0 S1 N2 N-atom S3 2A’1A’ 5.1 eV Cl-atom 2A”1A’ 5.6 eV 6 Experimental Absorption Spectrum 5 4 3 E / eV 2 1 0 Experiments with 6 eV photons: Formation of N2( J=68 ) + NCl(X3 and a1) Parallel transition: b=1.96 P(a)/P(X) = 0.78/0.22 N2 + NCl(X) N2 + NCl(a) Ereac.(1) = 0.21 eV K.E.R / eV 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 E(a-X) 7.0 Thermochemistry of ClN3 N2 + NCl Maximum release of translational energy provides accurate thermochemistry ClN3 N2(X) +NCl: E = -0.93eV ClN3N2(a) +NCl: E = 0.22eV Imaging of ClN3 + 2 h ClN3+ + e- NCl+ + N2 confirms this thermochemistry NCl+ b=1.1 Two components MAX ET 0.0 0.5 1.0 1.5 Cl* Translational Energy / eV 2.0 Reconstructed v-map Internally cold linear N3 Symmetrized image Velocity Map Image of Cl from ClN3 N3 + Cl(2P1/2) D0(Cl-N3) from Velocity Map Imaging E is known from laser wavelength. EMAX is derived mCl vMAX = mN3 vMAX Cl N3 2 1 1 MAX 2 mCl v MAX = m v Cl N3 N3 2 2 mClEMAX = mN3 EMAX Cl N3 2 mN3 + mCl 1 D0 (Cl - N3 ) = h - mCl vMAX Cl 2 mN3 Thermochemistry of the Cl/N/N/N Predicted by Bittererova et al. Zero Kelvin Heats of Formation All heats of formation now known within 0.1 eV Velocity Map Image of 2 Cl( P3/2) Bimodal energy distribution Angular Distributions parallel but not identical 45% of Eava in translation 80% of Eava in translation Photofragmentation translation spectroscopy Establishing the decomposition pathways important in ClN3 photolysis. Photofragmentation Translational Spectroscopy Electron bombardment ionization of photofragments provides universal detection With Ion fragmentation Detector is rotate-able to accept products recoiling at different angles, Q TOF reflects laboratory speeds, from which we extract the c.m. frame translational energy release, P(ET) NCl+ observed, but weak! ClN3 + h→ N2+NCl(1) minor 0.0005 0.0003 Probability / a.u. Signal (a.u.) b = - 0.3 Data NCl 0.0004 600 0.0002 Eava 0.0001 0.0000 0 50 100 150 TOF s 200 250 300 0 25 50 75 Translational Energy / kcal*mol 100 -1 75 kcal/mol in products of this reaction! Cl+-TOF, 50o: Cl + N3 is dominant channel Consistent with VMI, bimodal TOF observed ClN3 + h → Lin-N3 + Cl HEF-N3+ Cl b = 1.7 0.012 Ion counts/laser shot DATA lin. N3 HEF N3 0.010 NCl sec. photodiss. Total 0.008 500 0.006 0.004 b = 0.4 0.002 ClN3 + h → NCl + N2 NCl+ h → N+Cl 0.000 0 50 100 150 TOF s 200 250 300 + N3 , ClN3 + h → 0.008 lin-N3 + Cl HEF-N3+ Cl 0.007 Long-lived HEF N3 Ion Counts / laser shot bimodal N3 distribution b = 1.7 Data Total lin N3 0.006 HEF N3 0.005 500 0.004 0.003 0.002 b = 0.4 0.001 0.000 0 50 100 150 TOF s 200 250 300 Translational Energy Distributions of ClN3→Cl+ N3 M1v1 = M2v2 Experiments at m/z=42 (N3+) and m/z=35 (Cl+) are fundamentally redundant. Yet differences arise Mass 35 Mass 42 0.04 0.03 Probability 0.02 0.01 Likely due to N3 dissociation. 0.00 0 10 20 30 40 50 Center of mass energy [kcal] 60 70 PTS at 248 nm. Both Features shifted by change in photon energy. VMI-Experiment (235 nm) PTS-Experiment (248 nm) = 69 kcal/mol VMI at 235 nm summed over Cl (2PJ) ET MAX ET MAX = 38 kcal/mol Wavelength Dependence 0 10 20 30 40 50 Etrans /kcal*mol -1 60 70 80 N2+, unimolecular decomposition and photolysis of N3 0.020 DATA MODELTOF 2 N3 + h -> N( D) + N2 0.018 N3 → N2 + N(4S) N3 → N2 + N(2D) N3 + h→ N2+N(2D) Ion Counts / laser shot 0.016 4 300 0.014 HEF-N3 -> N( S) + N2 lin. N3 0.012 HEF-N3 0.010 NCl+ N2 2 0.008 HEF-N3 -> N( D) + N2 0.006 0.004 0.002 0.000 0 50 100 150 TOF s 200 250 300 N+, unimolecular decomposition and photolysis of N3 0.006 DATA TOTAL NCl + h -> N + Cl N3 + h-> N + N2 N3 → N2 + N(4S) N3 → N2 + N(2D) N3 + h→ N2+N(2D) Ion counts / laser shot 500 0.004 4 N3 -> N( S) + N2 2 N3 -> N( D) + N2 lin-N3 HEF-N3 0.002 0.000 0 50 100 150 TOF s 200 250 300 N3 Secondary photodissociation Data fit by two models lin-N3 + h→N(2D)+N2 HEF-N3 + h→N(2D)+N2 Evidence suggests the selective photodissociation of HEFN3 at 248 nm Primary and Secondary dissociation channels of 248 nm photolysis of ClN3 ClN3 + h→ NCl+ N2 NCl + h→ N + Cl ClN3 → Cl+ N3 (low energy form) ClN3 → Cl+ N3 (high energy form) N3 → N2 + N(4S) N3 → N2 + N(2D) N3 + h→ N2+N(2D) VUV synchrotron photoionization based photofragmentation translational spectroscopy Two thresholds in photo-ionization for N3 Experiment nearly unchanged Instead of electron impact ionization of photofragments We can use tunable VUV photons for near threshold ionization Eliminate ion fragmentation Measure ionization threshold + Cl and + N3 TOF N3+ Cl+ 0.010 Bimodal features seen again N3 observed with much better S/N Two forms of N3 well resolved in the TOF distribution m/e=42 0.008 Q= m/e=35 0.05 Q= 0.04 0.006 0.03 0.004 0.02 0.002 0.01 0.00 0.000 0.010 Counts/Passes, power Counts/Passes, power 0.06 0.06 m/e=35 m/e=42 0.008 Q= Q= 0.05 0.04 0.006 0.03 0.004 0.02 0.002 0.01 0.000 0.00 20 30 40 50 60 70 80 TOF (s) 90 100 20 30 40 50 60 70 TOF (s) 80 90 100 TOF spectra of N3 vs. ionization photon energy White light continuum produces “below threshold ions” 0.010 0.005 11.07 eV ionization of “fast peak” matches literature value for linear N3 0.000 9.44 9.86 10.27 10.67 11.07 rgy ne E n tio 11.49 11.91 12.37 New threshold ~10.6 eV 12.83 30 40 50 60 Time of Flight X 70 iza Ion Intensity Two photoionization thresholds for N3 produced in ClN3 photolysis N3 neutral TOF 1.0 0.010 0.8 x4 Counts/Passes, power Intensity (norm.) N3+ photoionization yield CYCLIC N3/N3+ theory Tosi, 2004 Krylov & Babikov, 2005 0.6 0.4 ● fast channel 0.2 slow channel Θ = 45o 0.0 m/e=42 0.008 Q= 0.006 0.004 0.002 0.000 20 30 40 50 60 70 80 TOF (s) 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 synchrotron photon energy / eV John Dyke, 1982 LINEAR N3 Experiment With Jim Jr-Min Lin at Hsinchu, NSRRC in Taiwan 90 100 Conclusions UV photolysis of ClN3 at 248 nm produces Cl and N3 with 0.95 quantum yield. Primary and Secondary decomposition pathways have been mapped out Two energetic forms of N3 seen, whose HF’s are in agreement with what is known for linear and cyclic N3 VUV photoionization threshold data also in agreement with theoretical predictions for linear and cyclic N3 If indeed we are seeing cyclic-N3, it is long lived. Acknowledgements Dr. Petros Samartzis, Dr. Nils Hansen, Yuanyuan Ji, Dr. Jason Robinson, Niels Sveum Dan Neumark, Dept. of Chemistry and Biochemistry, UCSB, Santa Barbara CA 93106 UC Berkeley Dr. Jim Jr-Min Lin , Tao-Tsung Ching, Chanchal Chadhuri, Shih-Huang Lee National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan, Republic of China Air Force Office of Scientific Research National Science Foundation