Diapositiva 1 - ACROPOLIS • Associazione per la

Download Report

Transcript Diapositiva 1 - ACROPOLIS • Associazione per la

PRESERVARE PER PROLUNGARE CONTROLLO DEL BILANCIO DEI FLUIDI CON BCM

Dott. Gianpaolo Amici, U.O. Nefrologia e Dialisi, Ospedale di Treviso

USRDS 2009 Adjusted mortality rates USRDS 2009 Change in hospitalization rates USRDS 2004 Risk of death (cause and modality)

Ipervolemia, ipertensione e patologia cardiovascolare in DP

Lameire N, et al. Cardiovascular diseases in peritoneal dialysis patients: the size of the problem. Kidney Int Suppl. 1996 Nov;56:S28-36.

Lameire N, Van Biesen W. Importance of blood pressure and volume control in peritoneal dialysis patients. Perit Dial Int. 2001 Mar-Apr;21(2):206-11.

Khandelwal M, et al. Volume expansion and sodium balance in peritoneal dialysis patients. Part I: Recent concepts in pathogenesis. Adv Perit Dial. 2003;19:36-43.

Khandelwal M, et al. Volume expansion and sodium balance in peritoneal dialysis patients. Part II: Newer insights in management. Adv Perit Dial. 2003;19:44-52.

Wang AY. Cardiovascular risk factors in peritoneal dialysis patients revisited. Perit Dial Int. 2007 Jun;27 Suppl 2:S223-7.

Wang AY. The John F. Maher Award Recipient Lecture 2006. The "heart" of peritoneal dialysis:residual renal function. Perit Dial Int. 2007 Mar-Apr;27(2):116-24.

Van Biesen W, et al. Residual renal function and volume status in peritoneal dialysis patients: a conflict of interest? J Nephrol. 2008 May-Jun;21(3):299-304.

Brunkhorst R. Hypervolemia, arterial hypertension and cardiovascular disease: a largely neglected problem in peritoneal dialysis. Clin Nephrol. 2008; Apr;69(4):233-8.

Carvalho MJ, Rodrigues A. Importance of residual renal function and peritoneal dialysis in anuric patients. Contrib Nephrol. 2009;163:155-60.

Piraino B. Cardiovascular complications in peritoneal dialysis patients. Contrib Nephrol. 2009;163:102-9.

Wang MC, et al.

BLOOD PRESSURE AND LEFT VENTRICULAR HYPERTROPHY IN PATIENTS ON DIFFERENT PERITONEAL DIALYSIS REGIMENS

Perit Dial Int 2001; 21: 36–42

“In this study, ambulatory nighttime systolic BP load >30% had an independent association with LVH. Office and home BP measurements were correlated with ABPM in PD patients. The result that CCPD patients had a higher LVMI than CAPD patients may be due to a relative volume overload during the daytime in CCPD patients”.

Nutritional Assessment Using Body Composition Monitoring in Peritoneal Dialysis Patients. Variables Determining Body Mass, Fat Tissue and Lean Tissue Index. Covic A (Van Biesen W), et al.

Objective

Apart from adequate management of the fluid status in peritoneal dialysis (PD) patients the nutritional aspect of the therapy is equally important for the patient’s morbidity and mortality. In this cross-sectional study body composition data was obtained with the Body Composition Monitor (BCM, Fresenius Medical Care) to identify relevant variables for optimized nutritional outcomes.

Methods

We screened 973 PD patients from 28 centers in 6 European countries. 639 patients met the inclusion/exclusion criteria. Body composition, blood pressure (BP), dialysis modality and prescription, pre-existing diseases, comorbidities, and antihypertensive medication were documented and analyzed.

Results

Mean body mass index (26.3

± 5.1 kg/mq) and fat tissue index (12.6

± 6.0 kg/mq) were slightly above the normal range whereas mean lean tissue index (13.4

± 3.4 kg/mq, LTI) was within normal range at a mean weight of 72.2

± 15.4kg and height of 166 ± 9.6 cm. Patients on glucose PD solutions alone had a statistically significantly better outcome than those on polyglucose or amino acid solutions in regard of nutritional parameters like lean tissue index.

Conclusions

The study provides essential information on nutritional status in a large representative cohort of European PD patients. BCM measurement enables clinicians to obtain objective data on patient’s body composition regarding fat tissue, lean tissue, and fluid status in routine clinical practice to optimize PD therapy and patient outcomes.

Devolder I, et al.

BODY COMPOSITION, HYDRATION, AND RELATED PARAMETERS IN HEMODIALYSIS VERSUS PERITONEAL DIALYSIS PATIENTS.

Perit Dial Int 2010; 30: 208–214 “Although much clinical attention is paid to volume status, 24% of patients still have clinically relevant volume overload. Implementation of a reliable and clinically applicable tool to assess volume status is therefore necessary. It is possible to obtain comparable volume status in PD and HD patients”.

BCM-Body Composition Monitor Principio di base delle frequenze multiple

ECW

measurement

Zero frequency

(Cell behaves as an insulator)

Cell Medium frequency (50 kHz)

(Cell behaves as a partial insulator)

ECW

Cell

i(t) ~ U(t)

ECW

High frequency

(Cell behaves as an ordinary conductor)

Cell

Apply AC

Range di misurazione: la curva dell‘impedenza

Information about body composition

Reaktance g b a

BIA

BIS

Meas. range BIS

Physiologic impedance curve of patient

R inf

BIA

(50 kHz) 1MHz 5kHz R 0 Resistance

Solo con Bioimpedance spectroscopy valutare la curva fisiologica (BIS) è possibile dell‘impedenza.

Come sono le curve di impedenza nei pazienti?

healthy subject

60 50 40 30

fluid overloaded patient

20

malnourished patient

10 0 200 300 400 500 600 700 Resistance [Ohm] 800 900

The impedance curves of patients are very different from healthy subjects.

To assess the body composition in healthies the complete curve must be measured.

Reactance

Impedenza multifrequenza e composizione corporea

1MHz 5kHz R

Weight, Height

Fluid Model

R 0

Body Model • ECW, ICW • Lean tissue • Fat • excess Fluid

Resistance

Proteins & minerals

Il modello a 3 compartimenti

Base del modello di composizione corporea del BCM ….

≈ 100% water Excess fluid Lean tissue 70% water Lipids & minerals Adipose tissue 20 % water Moissl UM, et al. Physiol Meas 2006; 27: 921-933.

Chamney PW, et al. Am J Clin Nutr 2007; 85: 80-9.

BCM – aspetto delle schermate

quantifies individual overhydration (L)

determines urea distribution volume (L)

measures non-invasively, fast and easy

provides a basis for nutritional assessment

Grafico analisi di un singolo paziente nel tempo con software BCM

Body Composition measured with BCM Overhydration BCM 70 60 50 40 30 20 10 LTM BCM Fat BCM

Combining Blood Pressure and Fluid Overload

• • hyper tension normo volemia • • hyper tension hyper volemia - heart disease - medication

140

Normotension

• •

normo tension normo volemia

• • normo tension hyper volemia

-1.1 L

Normovolemia

1.1 L

Fluid Overload

PA e idratazione con BCM in dialisi

Towards improved cardiovascular management: the necessity of combining blood pressure and fluid overload

P. Wabel, et al. NDT, 2008.

500

prevalent HD patients from 8 European centers (Germany, Poland, UK, Portugal, Cz)

Letteratura sul BCM

Moissl UM, et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas. 2006 Sep;27(9):921-33.

Chamney PW, et al. A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am J Clin Nutr. 2007 Jan;85(1):80-9.

Wizemann V, et al. Whole-body spectroscopy (BCM) in the assessment of normovolemia in hemodialysis patients. Contrib Nephrol. 2008;161:115-8.

Wabel P, et al. Towards improved cardiovascular management: the necessity of combining blood pressure and fluid overload. Nephrol Dial Transplant. 2008 Sep;23(9):2965-71.

Wizemann V, et al. The mortality risk of overhydration in haemodialysis patients. Nephrol Dial Transplant. 2009 May;24(5):1574-9.

Wabel P, et al. Importance of whole-body bioimpedance spectroscopy for the management of fluid balance. Blood Purif. 2009;27(1):75-80.

Crepaldi C, et al. Application of body composition monitoring to peritoneal dialysis patients. Contrib Nephrol. 2009;163:1-6.

Machek P, et al. Guided optimization of fluid status in haemodialysis patients. Nephrol Dial Transplant. 2010 Feb;25(2):538-44. Devolder I, et al. Body composition hydration and related parameters in hemodialysis versus peritoneal dialysis patients. Perit Dial Int 2010; 30: 208— 14.

Phi 50 kHz [°]

BCM e BIA - PhA

Bivariate Fit of Phase A By Phi 50 kHz [°]

9 4 3 2 8 7 6 5 3 4 5 Phi 50 kHz [°] 6 7 Bivariate Normal Ellipse P=0,950

Correlation

Variable Phi 50 kHz [°] Phase A Mean 5,110769 5,284615 Std Dev 1,040727 1,089311 Correlation 0,887227 Signif. Prob 0,0000 Number 39

Matched Pairs Difference: Phi 50 kHz [°]-Phase A

2,0 1,5 1,0 0,5 0,0 -0,5 -1,0 -1,5 -2,0 3 4 5 6 7 Mean: (Phase A+Phi 50 kHz [°])/2 8 Phi 50 kHz [°] Phase A Mean Difference Std Error Upper95% Low er95% 5,11077 5,28462 -0,1738 0,08134 -0,0092 -0,3385 N Correlation Phase A 39 0,88723 t-Ratio DF Prob > |t| Prob > t Prob < t -2,13718 38 0,0391 0,9805 0,0195

Z 50 kHz [Ohm]

BCM e BIA - R

Bivariate Fit of R BIA By Z 50 kHz [Ohm]

750 700 650 600 550 500 450 400 350 300 300 350 400 450 500 550 600 650 700 750 Z 50 kHz [Ohm] Bivariate Normal Ellipse P=0,950

Correlation

Variable Z 50 kHz [Ohm] R BIA Mean 512,0513 504,4359 Std Dev 81,50739 79,51028 Correlation 0,991845 Signif. Prob 0,0000 Number 39

Matched Pairs Difference: Z 50 kHz [Ohm]-R BIA

50 40 30 20 10 0 -10 -20 -30 -40 -50 300 350 400 450 500 550 600 650 700 750 Mean: (R BIA+Z 50 kHz [Ohm])/2 Z 50 kHz [Ohm] R BIA Mean Difference Std Error Upper95% Low er95% N Correlation 512,051 t-Ratio 504,436 7,61538 DF Prob > |t| 1,67703 11,0103 4,22044 39 0,99185 Prob > t Prob < t 4,541 38 <.0001

<.0001

1,0000 R BIA

Massa magra con BCM e PhA BIA

Bivariate Fit of Phase A By LTI [kg/mІ]

9 8 7 6 5 4 3 2 6 8 10 12 14 LTI [kg/mІ] 16 18 20 Bivariate Normal Ellipse P=0,950

Correlation

Variable LTI [kg/mІ] Phase A Mean 13,23243 5,275676 Std Dev 2,910332 1,100355 Correlation 0,665987 Signif. Prob 0,0000 Number 37

Iperidratazione e dati ecocardiografici in 40 pazienti di Treviso

Bivariate Fit of ECC FE% By OH [L]

85 80 75 70 65 60 55 50 45 40 -3 -2 -1 0 1 2 OH [L] 3 4 5 6 Bivariate Normal Ellipse P=0,950

Correlation

Variable OH [L] ECC FE% Mean 1,331429 67,07714 Std Dev 1,923198 8,726501 Correlation -0,33729 Signif . Prob 0,0475 Number 35

Bivariate Fit of LVMI Devereux-Penn g/mq By OH [L]

250 200 150 100 -3 -2 -1 0 1 2 OH [L] 3 4 5 6 Bivariate Normal Ellipse P=0,950

Correlation

Variable OH [L] LVMI Devereux-Penn g/mq Mean 1,331429 164,0497 Std Dev 1,923198 50,15456 Correlation 0,346941 Signif. Prob 0,0412 Number 35

Funzione renale e iperidratazione con BCM in 40 pazienti di Treviso

Bivariate Fit of Diuresi residua By OH [L]

2000 1500 1000 500 0 -3 -2 -1 0 1 2 OH [L] 3 4 5 6 Bivariate Normal Ellipse P=0,950

Correlation

Variable OH [L] Diuresi residua Mean 1,228947 638,4211 Std Dev 1,74339 521,4145 Correlation -0,32197 Signif. Prob 0,0487 Number 38

Bivariate Fit of GFR ml/min By OH [L]

8 7 6 5 4 3 2 1 0 -1 -3 -2 -1 0 1 2 OH [L] 3 4 5 6 Bivariate Normal Ellipse P=0,950

Correlation

Variable OH [L] GFR ml/min Mean 1,165714 2,36 Std Dev 1,795082 2,222174 Correlation -0,41823 Signif. Prob 0,0124 Number 35

Composizione corporea e tempo in DP in 40 pazienti di Treviso

Bivariate Fit of BMI [kg/mІ] By Etа dial

35 30 25 20 15 0 25 50 75 Etа dial 100 125 150 Bivariate Normal Ellipse P=0,950

Correlation

Variable Etа dial BMI [kg/mІ] Mean 32,4114 25,12687 Std Dev 32,33393 3,861442 Correlation 0,357082 Signif. Prob 0,0278 Number 38

Bivariate Fit of rel Fat [%] By Etа dial

50 40 30 20 10 0 25 50 75 Etа dial 100 125 150 Bivariate Normal Ellipse P=0,950

Correlation

Variable Etа dial rel Fat [%] Mean 34,05556 32,62222 Std Dev 32,44065 9,435226 Correlation 0,449396 Signif. Prob 0,0060 Number 36