Solve the Following Triangles
Download
Report
Transcript Solve the Following Triangles
Trigonometry Quizzes
Quiz #1
Quiz #8
Quiz #15
Quiz #2
Quiz #9
Quiz #16
Quiz #3
Quiz #10
Quiz #17
Quiz #4
Quiz #11
Quiz #18
Quiz #5
Quiz #12
Quiz #19
Quiz #6
Quiz #13
Quiz #20
Quiz #7
Quiz #14
Quiz #21
Menu
Definitions of Trigonometric
Values of Acute Angles
of a Right Triangle
• For the triangle at the right …
sin
cos
tan
cot
sec
csc
=
=
=
=
=
=
__________
__________
__________
__________
__________
__________
c
a
b
Menu
Definitions of Trigonometric
Values of Acute Angles
of a Right Triangle
• For the triangle at the right …
sin
cos
tan
cot
sec
csc
=
=
=
=
=
=
a
__________
c
b
__________
c
a
__________
b
b
__________
a
c
__________
b
c
__________
a
c
a
b
Menu
Definitions of Trigonometric
Values of Acute Angles
of a Right Triangle
• For the triangle at the right …
sin
cos
tan
cot
sec
csc
=
=
=
=
=
=
__________
__________
__________
__________
__________
__________
26
24
10
Simplify your answers by reducing any fractions!
Menu
Definitions of Trigonometric
Values of Acute Angles
of a Right Triangle
• For the triangle at the right …
sin
cos
tan
cot
sec
csc
=
=
=
=
=
=
12
__________
13
5
__________
13
12
__________
5
5
__________
12
13
__________
5
13
__________
12
26
24
10
Simplify your answers by reducing any fractions!
Menu
Trigonometric Values of the Acute
Angles of a Right Triangle.
Given that cot = 1.5,
determine the following:
sin = ______
c
a
cos = ______
tan = ______
sec = ______
b
csc = ______
Hint:
Let 1.5 = 3/2 and determine the values of a, b, and c in the diagram.
Menu
Trigonometric Values of the Acute
Angles of a Right Triangle.
Given that cot = 1.5,
determine the following:
2
2 13
3
3 13
13
sin = ______
13 c
a 2
13
cos = ______
13
13
2
3
tan = ______
13
sec = ______3
13
b 3
csc = ______2
Hint:
Let 1.5 = 3/2 and determine the values of a, b, and c in the diagram.
Menu
Trigonometric Values of the Acute
Angles of a Right Triangle.
a=6
sec = 5
b=8
--------------------
c = 10
sin = ______
--------------------
c
sin = ______
cos = ______
tan = ______
a
cos = ______
tan = ______
cot = ______
csc = ______
b
Simplify your answers by reducing any fractions!
Menu
Trigonometric Values of the Acute
Angles of a Right Triangle.
a=6
sec = 5
b=8
-------------------2 6
24
5
5
sin = ______
c = 10
1
--------------------
c
3
5
sin = ______
5
cos = ______
4
tan = ______
24 2 6
tan = ______
1
4
3
a
5
cos = ______
6
12
24
cot = ______
5
5 6
12
24
csc = ______
b
Simplify your answers by reducing any fractions!
Menu
Trigonometric Values of Special Angles
Complete the following table. Answers must be exact.
sin
cos
tan
0º
30º
45º
60º
90º
Menu
Trigonometric Values of Special Angles
Complete the following table. Answers must be exact.
sin
cos
0º
0
1
0
30º
1
3
3
45º
2
60º
3
90º
1
2
2
2
1
2
2
2
2
0
tan
3
1
3
DNE
Menu
Solve the Following Triangles
(Use a calculator and round answers to 1 decimal place.)
B
A = _________
A = 52°
B = _________
B = _________
C = 90°
C = 90°
c
a
a = _________
a = 17
b=7
b = _________
c = 10
c = _________
A
b
C
Menu
Solve the Following Triangles
(Use a calculator and round answers to 1 decimal place.)
B
45.6
A = _________
A = 52°
44.4
B = _________
38
B = _________
C = 90°
C = 90°
c
7.1
a = _________
a
a = 17
b=7
13.3
b = _________
c = 10
21.6
c = _________
A
b
C
Menu
Give exact answers. No calculators!
sin 45
sin 90
cos30
cos0
sec 60
csc 30
tan 45
tan30
cot 45
cot 90
Menu
Give exact answers. No calculators!
sin 45
2
cos30
3
sec 60
2
sin 90
1
2
cos0
1
2
csc 30
2
tan 45
1
tan30
3
cot 45
1
cot 90
0
3
Menu
Smallest Positive
Coterminal Angle
Angle
Reference Angle
582º
-260º
sin 30
cos300
tan 30
Menu
Angle
Smallest Positive
Coterminal Angle
582º
222
42
-260º
100
80
Reference Angle
sin 30
1
cos300
1
tan 30
2
2
3
3
Menu
Angle
Smallest Positive
Coterminal Angle
Reference Angle
200º
-300º
sin 45
sin 90
cos 45
cos180
tan 225
tan 270
Menu
Angle
Smallest Positive
Coterminal Angle
200º
200
20
-300º
60
60
sin 45
2
cos 45
2
tan 225
1
Reference Angle
2
sin 90
2
cos180
1
tan 270
DNE
1
Menu
Smallest Positive
Coterminal Angle
Angle
Reference Angle
11
3
3
4
Degrees
0º
30º
45º
60º
90º
150º
Radians
Menu
Angle
Smallest Positive
Coterminal Angle
Reference Angle
5
3
3
5
4
4
11
3
3
4
Degrees
0º
30º
45º
60º
90º
Radians
0
6
4
3
2
150º
5
6
Menu
1. Find the coterminal angle between 0 and
2 for each of the following:
-5/6
8/3
2. Find the reference angle (between 0 and
/2) for each of the following:
3/4
5/6
3. Give the following trig values:
sin(/6) =
cos(3/4) =
tan(-/3) =
Menu
1. Find the coterminal angle between 0 and
2 for each of the following:
7
-5/6
8/3
2
6
3
2. Find the reference angle (between 0 and
/2) for each of the following:
3/4
5/6
4
6
3. Give the following trig values:
1
sin(/6) =
2
cos(3/4) =
2
2
tan(-/3) = 3
Menu
4
sin
3
cos
6
3
tan
4
sec
cot
3
13
csc
2
Menu
4
sin
3
3
tan
4
sec
3
1
1
2
cos
6
cot
3
13
csc
2
3
3
2
3
1
Menu
sin
3
5
cos
6
11
sin
6
cos
sin
4
cos
3
2
5
tan
4
tan
tan
6
Menu
sin
3
3
11
sin
6
5
cos
6
2
1
cos
2
sin
4
2
2
2
3
5
tan
4
2
tan
0
cos
3
1
0
3
1
2
tan
6
3
Menu
Complete the following identities:
1
sin x
cos x
sin x
cos( x)
sin( x)
tan( x)
tan x
2
1 sin 2 x
1 2 sin 2 x
cos2 x sin 2 x
cos2 x sin 2 x
Menu
Complete the following identities:
1
sin x
csc x
cos x
sin x
cos( x)
cos x
sin( x)
tan( x)
tan x
tan x
2
1 sin 2 x
cos2 x
1 2 sin 2 x
cos 2x
cos2 x sin 2 x
cos 2x
cos2 x sin 2 x
1
cot x
sin x
cot x
Menu
Function
Domain
Range
f(x) = sin-1x
g(x) = cos-1x
h(x) = tan-1x
1
sin
2
1
cos
2
1
sin
2
tan1 1
1
1
1
Menu
Function
Domain
f(x) = sin-1x
1, 1
,
2
2
g(x) = cos-1x
1, 1
0,
h(x) = tan-1x
,
2 , 2
1
sin
2
1
1
cos
2
1
6
1
sin 6
2
1
Range
tan1 1
3
4
Menu
3
sin
2
1
1
sin
2
1
2
sin
2
1
1
3
cos
2
tan1 1
cos1 0
tan1 0
1 1
cos
2
3
t an
3
1
Menu
3
sin
2
1
1
sin
2
1
6
3 5
1
tan
1
cos
6
2
1
3
cos1 0 2
2
1
1
sin
cos
4
3
2
2
1
4
tan1 0 0
6
3
t an
3
1
Menu
3
arcsin
2
1
arcsin
2
2
arcsin
2
3
arccos
2
arctan 1
arccos 0
arctan 0
1
arccos
2
3
arct an
3
Menu
3
5
3
3 arccos
6 arctan 1 4
arcsin
2
2
1
arcsin 6
2
arccos 0 2
arctan 0 0
6
2
3
1
4 arccos 3 arct an
arcsin
2
3
2
Menu
1. State ONE of the Pythagorean identities.
2. State ONE of the double angle identities.
3. State ONE of the sum/difference identities.
4. Evaluate the following (exact answers without a calculator):
a. sin (7/6) =
b. arctan (-1) =
c. cos -1(-1/2) =
5. Evaluate the following (use a calculator and round to 2 decimal
places):
a. csc (1.8) =
b. cot -1(5) =
c. arcsec (0.3) =
Menu
1. State ONE of the Pythagorean identities.
cos2 x sin 2 x 1
2. State ONE of the double angle identities. cos(2x) cos2 x sin 2 x
3. State ONE of the sum/difference identities.
cos(a b) cos a cos b sin a sin b
4. Evaluate the following (exact answers without a calculator):
1
a. sin (7/6) =
2
b. arctan (-1) = 4
c. cos -1(-1/2) = 2
3
5. Evaluate the following (use a calculator and round to 2 decimal
places):
a. csc (1.8) = 1.03
b. cot -1(5) = 0.20
c. arcsec (0.3) = DNE
Menu
1
sin 0
1
tan
3
1
1
cos 0
sin (sin(0.25))
1
1
tan 0
cos(cos 2)
3
sin
2
cos sin
4
2
cos
2
1 1
sin cos
7
1
1
1
Menu
1
sin 0
1
cos 0
1
tan 0
tan
sin (sin(0.25)) 0.25
2
1
cos(cos 2) DNE
0
3
cos sin 4
4
1
3
2 3
4
cos
2
1
3 3
1
3
sin
2
1
1
0
1 1 48 7 4 3 7
sin cos
7
Menu
sin
1
1
cos 1
1
tan 1
1
2
sin
2
1
3
cos
2
1
1
tan 3
1
tan (tan(0.5))
1
sin(sin 3)
cos sin
4
1
1 3
cos sin
5
Menu
sin
1
1 2
cos 1
tan 1
1
1
2
sin
2
1
3
cos
2
1
1
tan 3
3
1
tan (tan(0.5))
1
sin(sin 3)
4
0.5
DNE
cos sin
4
1
4
6
1 3
cos sin
5
4
4
5
Menu
Determine the Polar coordinates for the point (-5, 200º) that satisfies the
following criteria:
r > 0 & 0º < < 360º
(___, ___º)
r < 0 & -360º < < 0º
(___, ___º)
Convert from Polar to Cartesian:
(0, 120º) = (___, ___)
(7, -45º) = (___, ___)
r = 3sin - 4cos
__________________
Convert from Cartesian to Polar:
(0, 12) = (___, ___º)
(7, -7) = (___, ___º)
2xy = 1
__________________
Menu
Determine the Polar coordinates for the point (-5, 200º) that satisfies the
following criteria:
r > 0 & 0º < < 360º
(___, ___º)
r < 0 & -360º < < 0º
(___, ___º)
Convert from Polar to Cartesian:
(0, 120º) = (___, ___)
(7, -45º) = (___, ___)
r = 3sin - 4cos
5, 20
5,
160
0, 0
7 2 , 7 2
2
2
__________________
x2 y 2 3 y 4 x
Convert from Cartesian to Polar:
(0, 12) = (___, ___º)
(7, -7) = (___, ___º)
2xy = 1
12, 0
7, 45 7, 315
__________________
r csc(2 )
Menu