Asphalt Rubber Research

Download Report

Transcript Asphalt Rubber Research

Asphalt Rubber Research
Rubber Pavement Association
Technical Advisory Board Meeting
11 July 2002
San Diego, California
Kamil E. Kaloush
Arizona State University
AR Research Background
at ASU


Started July 2001
Obtain Typical Engineering Material
Properties for AR Mixtures and Binders
 >>> 2002 Design Guide
 Compare the Laboratory Performance
of AR Mixtures To Conventional ADOT
Mixtures
 Special Studies: Field - Laboratory
Comparison
Research Partners
Arizona State University
Current Projects
1st Project:
Jul 01 – Jun 02
I-40 Buffalo Range Sections
2nd Project:
Nov 01 – Nov 03
I-17 Frontage Rd.
AR Demonstration Program
Satisfy Research Needs
 Project 2: PG Binder Specifications for AR
Binders.
 Project 8: Database of Asphalt Rubber
Projects.
 Project 10: Evaluate AR Using 2002
Design Guide Test Protocols.
 Project 11: Laboratory and Field
Evaluation
Current Projects
3rd Project:
Jul 02 – Jan 03
Alberta AR Test Section
4th Project:
ALF Test Section
Asphalt-Rubber Technology
Research Center (ARTIC)
Library Update
 Project 3: Document Merits of Asphalt
Rubber Products
 Project 5: Individual Technical Merit
Documents
I-40 Buffalo Range
 One Stock Binder (58-22).
 Gap / Open Graded Mixes.
 Binder Tests.
 Mixture Tests on HMA.
 In-situ Air Voids
I-40 MP 229
AR Demonstration Program

Acting as a Catalyst to
Expand the Environmental Responsible Use
of Crumb Rubber
 Demonstrate the Use of Ground Tire Rubber
in Asphalt Pavement Construction
 >> Nationwide Implementation.
Project Ends
Pinnacle Peak Rd.
Project Start
AR Demonstration Program




Mainly PG 64-16 / (Test Section 58-22).
Gap Graded Mix
Binder and HMA Testing
Lab Experimental Design on HMA
 3 Compaction Levels
 2 Aging Levels
 Field Specimens
 Reflective Cracking Model Verification
(CONSULPAV: Dr. Jorge Sousa)
Gyratory Compaction
/ Coring
Air Voids Measurements Corelok
Comparison Of Air Voids By SSD and Corelok
All Specimen Sizes
25
P-ACFC
C-ACFC
B-ACFC
B-ARAC
D-ACFC
Va(%) Corelok
C-ARAC
20
15
10
5
D-I 17
Of Equality
0
0
5
10
15
Va(%) SSD
20
25
Binder Tests
Conventional Tests
 Penetration AASHTO T49-93
 Softening Point AASHTO T53-92
 Rotational Viscosity AASHTO TP48
Superpave /
SHRP Tests
 Dynamic Shear
Rheometer (DSR):
AASHTO PP1
 Bending Beam Rheometer
(BBR): AASHTO TP1-98
ASU Experience in AR
Binder Handling / Testing
 Heating: Needs Additional 15 to 20 min
 Use Continuous & Rigorous Stirring
 RTFO : Spill Over (~ 20%)
 Brookfield: Select Proper Spindle
Buffalo Range (PG58-22 + R)
Viscosity - Temperature Relationship (Original Binder)
1.4
Log (Log viscosit y, cP)
1.2
Pen
59, 77oF
ARAC PG 58-28: y = -2.4795x + 7.6903
2
R = 0.989
1.0
0.8
0.6
0.4
Soft. Point
139oF
Brookfield Viscosity
200-350oF
0.2
0.0
2.70
(deg F) (41)
2.75
(103)
2.80
2.85
(171)
(248)
Log (Temp, o Rankine)
2.90
(335)
2.95
(432)
PG 58-22 With and Without Rubber
Viscosity - Temperature Relationship
1.2
Log (Log vis) (cp)
1.0
0.8
ARAC
PG58-22
0.6
0.4
0.2
0.0
2.70
2.75
2.80
2.85
Log (Temp) (Rankine)
2.90
2.95
Comparison with ADOT Binders
Viscosity - Temperature Relationship
1.2
Log (Log vis) (cp)
1.0
0.8
ARAC
PG58-22
PG64-16
PG64-22
PG70-10
PG76-16
0.6
0.4
0.2
0.0
2.70
2.75
2.80
2.85
Log (Temp) (Rankine)
2.90
2.95
Comparison with PG 76-16 Binder
Viscosity - Temperature Relationship (Original Binder)
1.4
ARAC PG 58-28: y = -2.4795x + 7.6903
2
R = 0.989
Log (Log viscosit y, cP)
1.2
Chevron PG 76-16: y = -3.6295x + 10.869
1.0
2
R = 0.9986
0.8
0.6
0.4
0.2
CRA PG 58-28
Chevron PG 76-16
0.0
2.70
(deg F) (41)
2.75
(103)
2.80
2.85
(171)
(248)
o
Log (Temp, Rankine)
2.90
(335)
2.95
(432)
Effect of RTFO and PAV
Viscosity - Temperature Relationship of Copperstate CRA PG 58-22 Binder
1.2
Original: y = -2.4795x + 7.6903
2
R = 0.989
PAV100
Log (Log viscosity, cP)
1.0
RTFO
RTFO :y = -2.3145x + 7.2872
R2 = 0.9713
ORIGINAL
0.8
PAV100: y = -2.255x + 7.1466
R2 = 0.9913
0.6
0.4
0.2
0.0
2.70
2.75
2.80
2.85
2.90
2.95
(deg F) (41)
(103)
(171)
(248)
(335)
(432)
Log (Temp, oRankine)
Comparison With PG 76-16 Binder
RTFO
Viscosity - Temperature Relationship (RTFO)
1.4
CRA PG 58-28: y = -2.3145x + 7.2872
2
R = 0.9713
Chevron PG 76-16: y = -3.542x + 10.642
1.0
2
R = 0.9989
0.8
Viscosity - Temperature Relationship (PAV100)
PAV
1.4
0.6
CRA PG 58-28: y = -2.255x + 7.1466
2
R = 0.9913
1.2
0.4
0.2
CRA PG 58-28
Chevron PG 76-16
0.0
2.70
2.75
(deg F) (41)
(103)
2.80
2.85
(171)
(248)
o
Log (Temp, Rankine)
2.90
(335)
2.95
(432)
Log (Log viscosit y, cP)
Log (Log viscosit y, cP)
1.2
Chevron PG 76-16: y = -3.3005x + 10.013
1.0
2
R = 0.995
0.8
0.6
0.4
0.2
CRA PG 58-28
Chevron PG 76-16
0.0
2.70
2.75
2.80
2.85
o
Log (Temp, Rankine)
2.90
2.95
Mixture Tests:
NCHRP 9-19 SPT Candidates
Triaxial Compression
1. Dynamic Modulus (E*)
2. Flow Time (FT) – (Static Creep Test)
3. Flow Number of Repetitions (FN) –
(Repeated Load Test)
E* Dynamic Modulus Testing
Phase Lag in
Dynamic Loading
Phase lag
Stress
Strain
3 to 200 psi
Confinement
Time
0
E* 
0
1= 36 psi for T =14°F
1= 20 psi for T =40°F
1= 9 psi for T =70°F
1= 4 psi for T =100°F
1= 2 psi for T =130°F
1
E*
Master
Curve
0,1
0,01
0,01
0,1
1
10
100
Loading Time (s)
14F
40F
70F
100F
130F
10
E*, 10^6 psi
E*, 10^6 psi
10
1
0,1
0,01
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
Log Reduced Time, s
Temperature (°F)
14
40
70
100
130
7
Creep Test
- Rutting
Stress

Time
Secondary
Primary
Tertiary
FT Defines Time When
Shear Deformation Begins
Repeated Load Test
- Rutting
Load
2
14
Permanent Strain (in/in)
0.1 s
16
2
14
16
Number of Cycles (N)
0.9 s
r MR
p =
aNb
FN (Flow Number)
N
Cracking Tests
Indirect Tensile Creep Test
1. Creep Compliance
2. Strength
Cracking Tests
Flexural Fatigue Tests
SHRP M-009
2002 Design Guide
Generalized fatigue equation for mixed
loading mode:
k2
k3
1 1
N f  K1    
 t   E 
εt
E
N
E* Master Curves Comparison
10
E* 10^6 psi
1
0.1
Air Void (%)
ARAC Gap Graded (58-22)
AR-ACFC Open Graded (58-22)
ARAC Gap Graded (64-16)
PG 76-16
PG 64-22
10.87
17.63
5.74
7.94
7.52
0.01
-8
-6
-4
ARAC (58-22)
-2
0
Log Red Time, s
AR-ACFC (58-22)
2
4
6
ARAC (64-16)
PG 76-16
PG 64-22
8
Repeated Load Tests
b) REPEATED LOAD UNCONFINED TEST
FLOW NUMBER
3 = 0 psi d = 15 psi
Temp 130oF
12,118
12,000
10,000
8,000
6,000
4,000
2,000
738
605
b) REPEATED LOAD UNCONFINED TEST
AXIAL STRAIN @ FN
-
AR-ACFC
ARAC
SRB PG64-22
3 = 0psi d = 15psi
Temp 130oF
12
10
Strain [%]
Flow Number [cycles]
14,000
8
6
4
3.120
2.727
2
0.327
0
AR-ACFC
ARAC
SRB PG64-22
Static Creep Tests
b) STATIC CREEP UNCONFINED TEST
FLOW TIME
3 = 0 psi d = 10 psi
Temp 130oF
23,826
4,000
3,000
2,000
1,000
108
135
-
AR-ACFC
ARAC
SRB PG64-22
b) STATIC CREEP UNCONFINED TEST
AXIAL STRAIN
3 = 0 psi d = 10 psi
Temp 130oF
8
Strain [%]
Flow Time [sec]
5,000
6
4
3.394
1.874
2
0.277
0
AR-ACFC
ARAC
SRB PG64-22
a ) IN D IR E C T T E N S IL E S T R E N G T H T E S T
T E N S IL E S T R E N G T H
500
400
277
300
200
100
83
105
AR -AC F C
AR AC
0
S R B P G 6 4 -2 2
b ) IN D IR E C T T E N S IL E S T R E N G T H T E S T
T E N S IL E S T R E N G T H
T en sile Stren g th (p si)
Te m p 1 4 º F
500
437
400
300
200
137
144
AR -AC FC
AR AC
100
0
S R B P G 64-22
c ) IN D IR E C T T E N S IL E S T R E N G T H T E S T
T E N S IL E S T R E N G T H
Te m p 5 º F
T en sile S tre n g th (p si)
Indirect Tensile
Strength Tests
Te nsile S tre ngth (ps i)
Te m p 3 2 º F
446
500
400
300
200
157
190
100
0
AR -AC FC
AR AC
S R B P G 64-22
a) IN D IR E C T T E N S IL E S T R E N GT H T E S T
S T R AIN @ F AIL U R E
Te mp 32º F
St rain @ Fa ilure
4E-03
Thermal Cracking
2.47E -03
3E-03
2E-03
1.43E -03
1E-03
0E+ 00
AR -AC F C
AR AC
S R B P G64-22
b ) IN D IR E C T T E N S IL E S T R E N GT H T E S T
S T R AIN @ F AIL U R E
Te mp 14º F
St rain @ Fa ilure
Indirect Tensile
Strength Tests
3.47E -03
4E-03
3E-03
2E-03
1.47E -03
1.10E -03
9.85E -04
AR AC
S R B P G64-22
1E-03
0E+ 00
As Tensile Strain
AR -AC F C
c) INDIRECT TENSILE STRENGTH TEST
STRAIN @ FAILURE
Temp 5º F
Strain @ Failure
4E-03
3E-03
2.15E-03
2E-03
1.30E-03
7.05E-04
1E-03
0E+00
AR-ACFC
ARAC
SRB PG64-22
Thermal Cracking
400
300
295
256
330
200
100
0
A R -A C F C
AR AC
S R B P G 6 4 -2 2
b ) IN D IR E C T T E N S IL E S T R E N G T H T E S T
F R AC T U R E E N E R GY
Te m p 1 4 º F
400
300
inc h)
Fra c tu re E ne rgy (lbs x
Indirect Tensile
Strength Tests
Te m p 3 2 º F
inc h)
Fra c tu re E ne rgy (lbs x
a ) IN D IR E C T T E N S IL E S T R E N G T H T E S T
F R AC T U R E E N E R GY
282
300
232
200
100
0
A R -A C F C
As Fracture Energy
AR AC
S R B P G 6 4 -2 2
Te m p 5 º F
400
300
inc h)
Fra c tu re E ne rgy (lbs x
c ) IN D IR E C T T E N S IL E S T R E N G T H T E S T
F R AC T U R E E N E R GY
208
200
188
121
100
0
A R -A C F C
AR AC
S R B P G 6 4 -2 2
Fatigue Test Results
Gap – Open – Dense Graded
Fatigue Relationship for ADOT Asphalt Rubber Mixes & ADOT Salt River Base Mix at Control Strain and 70 oF at 50% of
Initial Stiffness
10000
 - Flexural Strain (in/in)
ADOT SRB 7%Va
ARAC-LAB 11%Va
AR-ACFC-LAB 18%Va
1000
100
1.E+02
1.E+03
1.E+04
1.E+05
N - Number of Repetitions
1.E+06
1.E+07
Summary
 The Conventional Binder Tests are Adequate in
Describing the Viscosity-Temperature
Susceptibility (A-VTS) of Crumb Rubber Modified
Binders.
 This A-VTS Relationship Also Appears to Relate
to Observed Field Performance Behavior.
 Less Low-Temperature Cracking
 Good Resistance to Rutting at High
Temperatures.
Summary
 Corelok is a Useful Device for Measuring
Mixture Air Voids, Especially ACFC Mixes
 E*AR Mixes ~ E* Conv. Mixes (Note Va %)
 Permanent Deformation (PD)Tests: >
ARAC Good Resistance to Deformation
Summary
 Tensile Strength: No Advantages of AR Mixes
 Strain at Failure
 Fracture Energy
were Better Indicators of Field Performance
 Fatigue Relationships: AR-ACFC and ARAC
Mixtures Provides Much Better Fatigue Life
Than Dense Graded PG 76-16 Mix.
Acknowledgment






George Way, Julie Nodes, Doug Forstie, ADOT
Mark Belshe, FNF Construction
Donna Carlson, Doug Carlson, RPA
Andy Acho, Ford Motor Company
Matthew Witczak, ASU
ASU Advanced Pavement Laboratory Staff / GRA’s
 Kenny Witczak, Javed Bari, Mohammad
Abojaradeh, Aleksander Zborowski, Andres Sotil
Thank you !