Transcript 슬라이드 1
The roles of orbital in the optical and magnetic properties of RMnO3 (R = rare earth ions) Tae Won Noh Research Center for Oxide Electronics & School of physics, Seoul National University Seoul, Korea Oct 28th, KIAS workshop Acknowledgements Collaborators M. W. Kim & S. J. Moon J. H. Jung (Inha Univ.) S. Parashar (ReCOE, SNU) P. Murugavel (ReCOE, SNU) Valuable discussion with G. Khaliullin (Max Plank Institute) K. Ahn (Argonne NL) J. Goodenough (U. Texas) P. Littlewood (Cambridge U) P. B. Allen (SUNY, Stony Brook) Oct 28th, KIAS workshop Jaejun Yu Outline 1. Motivation : long-standing puzzles in (La,Y)MO3 2. Orbitally degenerate Hubbard model (ODHM) * Multiple peak structure in LaMO3 3. Applications of ODHM to the 2 eV peak of RMnO3 * 2 eV peak in LaMnO3 * Probing orbital correlations in RMnO3 4. Summary Oct 28th, KIAS workshop Single-band Hubbard model for correlated electrons Kinetic energy correlation Dynamic MFT Mott insulator (U >> W) U op () O 2p op LHB UHB U p–d transition Georges et al., Rev. Mod. Phys. (1996) Oct 28th, KIAS workshop Multi-peak structures in () for numerous oxides V2O3 Perovskite structure 4 eV Rozenberg et al., PRL (1994). Arima, Tokura, and Torrance, PRB (1993). Correlation peaks : broad and/or multiple peak structures Cannot be simply explained in terms of the single band picture Oct 28th, KIAS workshop Charge transfer and correlation peaks in LaMO3 Arima and Tokura, JPSJ (1995). 1. 2. 3. Oct 28th, KIAS workshop Large reduction the d-d transition How to of understand these energies Disappearance the d-d transition for LaCrO3 somewhat of anomalous behaviors Abnormal energy in parameter LaMO ? for LaMO3 3 Outline 1. Motivation : long-standing puzzles in (La,Y)MO3 2. Orbitally degenerate Hubbard model * Multiple peak structure in LaMO3 3. Applications of ODHM to the 2 eV peak of RMnO3 * 2 eV peak in LaMnO3 * Probing Orbital/Spin correlations in RMnO3 4. Summary Oct 28th, KIAS workshop Optical anisotropy due to orbital ordering Tokura et al., SCIENCE 288 462 (2000) La1.5Sr0.5MnO4 : CE-type OO Polarized microscopy Large optical anisotropy due to the orbital ordering below TCO Optical properties will be strongly dependent on the orbital degrees of freedom. Oct 28th, KIAS workshop Orbital degeneracy: d-electron in a cubic crystal field 3z2-r2 eg 2 2 x -y 3d, 4d 10Dq l=2 m=-2,-1,0,1,2 xy yz zx t2g 10Dq : Electrostatic potential due to ligand anions “crystal field splitting” Degeneracy of eg/t2g orbitals is common in cubic perovskite structure. Oct 28th, KIAS workshop The orbitally degenerate Hubbard model (ODHM) U U U’(=U-2J) U’-J (=U-3J) if J’ = J Oct 28th, KIAS workshop from a simple atomic picture Spin/Orbital configurations for t2g1 system Ferro-orbital (FO) Antiferro-orbital (AFO) Oct 28th, KIAS workshop FM/FO AFM/FO FM/AFO AFM/AFO Orbital selection rule for interatomic d-d transitions 1 () i f | f | x | i |2 Hopping between the different orbitals is not allowed. Hopping between the same orbitals is allowed. Oct 28th, KIAS workshop Orbital multiplicity effects based on the simple atomic picture Example LaTiO3 (t2g1) multiplet final states and energy costs Optical processes t2g2 t2g1 + t2g1 t2g0 + t2g2 (LaTiO3) Schematically, U – 3JH U U – 3JH Oct 28th, KIAS workshop t2g2 t2g2 U –2JH U U –2JH Forbidden Orbital multiplicity effect on the t2g2-configuration 1A 1 t2g2 1T 3T 2 1 U+2JH [=A+10B+5C] 1E U-JH [=A+B+2C] U-3JH [=A-5B] (U=A+4B+3C JH=3B+C) Wavefunctions of t2g2-configuration (3T1 M=1) = |dxy()dxy()| (3T1 M=0) =1/2(|dxy()dxy()|-|dxy()dxy()|) (3T1 M=-1) = |dxy()dxy()| (1T2) =1/2(|dxy()dxy()|+|dxy()dxy()|) (1Ev) =1/2(|dyz()dyz()|-|dzx()dzx()|) (1Eu) =1/6(-|dyz()dyz()|-|dzx()dzx()|+2|dxy()dxy()|) (1A1) =1/3(|dyz()dyz()|+|dzx()dzx()|+|dxy()dxy()|) Oct 28th, KIAS workshop Energy values U-3JH U-JH U+2JH Orbital multiplicity effects on the inter-site d-d transitions Example LaTiO3 (t2g1) Optical processes t2g1 + t2g1 t2g0 + t2g2 (LaTiO3) Schematically, multiplet final states and energy costs t2g2 (3T1) t2g2 (1E, 1T2) t2g2 (1A1) U – 3JH U –JH U + 2JH U + 2JH U – 3JH Oct 28th, KIAS workshop U –JH Forbidden Understanding of d-d transitions under orbital multiplicity 3.20 1.28 RTi3+O3 (t2g1) : (JH=0.64 eV) U-3JH 1.92 U -JH U +2JH T. Arima and Y. Tokura, JPSJ (1995). Oct 28th, KIAS workshop Orbital multiplicity effects on the inter-site d-d transitions II multiplet final states and energy costs Optical processes t2g1 + t2g1 t2g0 + t2g2 t2g2 (3T1) t2g2 (1E, 1T2) t2g2 (1A1) U – 3JH U –JH U + 2JH t2g3 (4A2) t2g3 (2E, 2T1) t2g3 (2T2) (LaTiO3) t2g2 + t2g2 t2g1 + t2g3 (LaVO3) t2g3 + t2g3 t2g2 + t2g4 (LaCrO3) U – 3JH U U + 2JH t2g2 (3T1) / t2g4 (3T1) U + 2JH For more information, see J. S. Lee, M. W. Kim, and T. W. Noh, New Journal of Physics 7, 147 (2005) Oct 28th, KIAS workshop Understanding of d-d transitions under orbital multiplicity RCr3+O3 (t2g3) : (JH=0.72 eV) U+2JH 3.40 2.04 (t2g : (JH=0.68 eV) RV3+O3 1.36 2) U -3JH U U +2JH 3.20 1.28 (t2g : (JH=0.64 eV) RTi3+O3 1.92 1) U-3JH U -JH U +2JH Arima and Tokura, JPSJ (1995). The broad (multiple) correlation peaks can be explained . Oct 28th, KIAS workshop Outline 1. Motivation : long-standing puzzles in (La,Y)MO3 2. Orbitally degenerate Hubbard model * Multiple peak structure in LaMO3 3. Applications of ODHM to the 2 eV peak of RMnO3 * 2 eV peak in LaMnO3 * Probing Oribital/Spin correlations in RMnO3 4. Summary Oct 28th, KIAS workshop Some explanations on 2.0 eV peak in LaMnO3 Arima and Tokura, JPSJ (1995). LaMO3 1) Charge transfer peak ? Arima and Tokura, PRB (1995) Tobe et al., PRB (2001) 2) Band picture: inter-atomic peak coupled with the local spin alignment? Ahn and Millis PRB (2000) 3) Intramolecular peak due to Frank-Condon process ? Allen and Perebeinos, PRL (1999) Krüger et al., PRL (2004) Oct 28th, KIAS workshop A explanation of the 2.0 eV peak based on the ODHM LaMO3 (t2g3eg1) (t2g3eg1) (t2g3eg0) (t2g3eg2) (LaMnO3) t2g3eg2 (6A1) ~ U – 3JH t2g3eg2 (4A1, 4E) ~ U +2JH t2g3eg2 (4A2) ~ U + 4JH 5.60 4.0 M=Mn (t (JH=0.80 eV) 3 1 2g eg ) Arima and Tokura, JPSJ (1995). Oct 28th, KIAS workshop 1. 60 : U -3JH U +2JH U+4JH Other experiment supports our picture on 2 eV peak The 2 eV peak in Resonant Inelastic X-ray Scattering: Energy and Momentum dependences well agree with the picture of inter-band transition between Hubbard bands. Inami et al., PRB (2003) Oct 28th, KIAS workshop Merits of ODHM explanation for 2 eV peak of LaMnO3 1. Ground state spin/orbital configuration 2. Anisotropic optical conductivity 3. Temperature dependence of the spectra 4. Rare earth doping effects on optical spectra M. W. Kim et al. submitted to PRL Oct 28th, KIAS workshop ODHM explanation for 2 eV peak of LaMnO3 1. Ground state schematic configurations for possible transitions (a) FM/FO c (b) FM/AFO b a Forbidden A-type AFM spin order 6A 1 lowest energy (c) AFM/FO (d) AFM/AFO c b 4E a 4A C-type orbital order Oct 28th, KIAS workshop 4A 4E ODHM explanation for 2 eV peak of LaMnO3 2. Anisotropic optical conductivity Tobe et al. PRB (2001) c b a Oct 28th, KIAS workshop Kovaleva et al., PRL (2004) -1 Absorption Coefficient (cm ) ODHM explanation for 2 eV peak of LaMnO3 3. Temperature dependence Spectral weight show distinct suppression as crossing the antiferromagnetic ordering T. M. W. Kim et al. NJP (2004) 5 2.0x10 10 K 50 K 100 K 125 K 150 K 200 K 250 K 300 K 5 1.5x10 5 1.0x10 4 5.0x10 0.0 0.5 1.0 Tobe et al. Phys. Rev. B (2001) -1 Spectral Weight (eVcm) LaMnO3 1.5 2.0 2.5 Photon Energy (eV) 3.0 3.5 5 2.65x10 5 2.60x10 5 2.55x10 5 2.50x10 0 Oct 28th, KIAS workshop 50 100 150 200 250 Temperature (K) 300 ODHM explanation for 2 eV peak of LaMnO3 4. Rare earth substitution effects M. W. Kim et al., PRL (submitted) Kimura et al. PRB (2003) 1. The peak energy change is small. 2. The spectral weight change is large. -1 (cm ) 2.0x10 5 1.5x10 5 1.0x10 5 5.0x10 4 LaMnO3 PrNdGdTb- 300 K 0.0 0 1 2 Photon Energy (eV) Oct 28th, KIAS workshop 3 R-ion dependence of the integrated spectral weight absorption coefficient Oct 28th, KIAS workshop Spectral weight (norm.) Kimura et al. Phys. Rev. B (2003) 0.8 0.6 0.4 Tb Gd 0 1.0 Pr La 1 1 2 3 0 Photon Energy (eV) 2 3 La Pr Nd Gd Tb 0.2 0.0 1.23 1.20 1.17 1.14 1.11 Ionic radius of R-site (A) 1.08 Orbital pattern dependent optical matrix element 2 I ( ) f P i 2 ( Ei f ) f Large R-ion Small R-ion Electric dipole transition probability Wi f f | P | i ~ f | i 2 2 Orbital rotation eg 2 empty occupied Mn i sin eg 2 eg 1 2 x 2 y 2 cos eg 1 2 3z 2 r 2 Jahn-Teller distortion and GdFeO3 type distortion can suppress the electron hopping in the ab-plane. Orbital Mixing Oct 28th, KIAS workshop Rotation of orbital due to the buckling of MnO6 octahedra Electric dipole transition probability Wi f f | P | i ~ f | i 2 2 cf. Goodenough and Kanamori rule Oct 28th, KIAS workshop R-ion dependence of the integrated spectral weight 10 deg. Bond angle of <Mn-O-Mn> (deg.) 155.2 La 151.1 150.0 Pr Nd 146.5 145.3 Gd Tb 1.0 “Orbital rotation” cannot alone explain the drastic change. (a.u.) W 0.6 S 0.8 0.4 SW 0.2 S W ( f) (exp.) 0.0 1.20 1.16 R-ion radius (A) Oct 28th, KIAS workshop 1.12 1.08 Orbital mixing due to the Jahn-Teller distortion z x i cos Oct 28th, KIAS workshop i 2 3z r 2 2 sin i 2 x2 y2 Spectral weight change due to the bond-angle and orbital mixing angle Y 1.0 0.8 S (a.u) 0.6 X 0.4 0.2 0.0 105 40 30 θ 110 (d eg .) 10 115 S f | i Oct 28th, KIAS workshop g.) 20 0 –Φ (π de /2 ( ) 2 Rotation of needle-like orbital controls the charge motion Spectral weight change due to the bond-angle and orbital mixing angle y2 Y 1.0 0.8 x1 X x2 0.6 S (a.u) y1 0.4 0.2 0.0 105 40 30 θ 110 (d 20 eg .) 10 115 S f | i Oct 28th, KIAS workshop 2 0 – (π Φ g.) (de 2 / ) Spectral weight change due to the bond-angle and orbital mixing angle LaMnO3 y2 Y 1.0 x1 y1 0.8 X x2 S (a.u) 0.6 0.4 0.2 0.0 105 40 30 θ 110 (d eg .) 10 115 S f | i Oct 28th, KIAS workshop 2 g.) 20 0 –Φ π ( de /2 ( ) TbMnO3 R-ion dependence of the integrated spectral weight 10 deg. Bond angle of <Mn-O-Mn> (deg.) 155.2 La 151.1 150.0 Pr Nd 146.5 145.3 Gd Tb 1.0 “Orbital rotation” and “Orbital mixing” can explain the drastic change. (a.u.) W 0.6 S 0.8 0.4 SW 0.2 S 0.0 (exp.) W ( f) S W ( f, ) 1.20 1.16 R-ion radius (A) Oct 28th, KIAS workshop 1.12 1.08 Spectral weight change vs. magnetic phase diagram Bond angle of <Mn-O-Mn> (deg.) SW (a.u.) 1.0 151.1 150.0 146.5 145.3 SW (measured) 150 TN (A-type) La Pr 0.8 TN (E-type) TIC (sine-wave) 100 Nd 0.6 Sm 0.4 Gd A-AF Tb Ho 50 0.2 0.0 ? 1.20 1.15 1.10 ionic radius of R-site ( Å ) Orthorhombic Oct 28th, KIAS workshop TN (K) 155.2 E-AF 0 1.05 The magnetic phase diagram is reproduced from the work by Kimura et al. PRB (2003) Hexagonal Summary 1. Based on the orbitally degenerate Hubbard model, we could explain optical spectra of (La,Y)MO3 (M = 3d transition metal). 2. We showed that features of 2 eV peak of LaMnO3 can be explained within the orbitally degenerate Hubbard model. 3. We proposed that the orbital correlations could affect R-ion size dependent spectral weight change and magnetic properties of RMnO3. 4. Optical spectroscopy is a good experimental technique to probe the orbital correlation in strongly correlated electron systems. Oct 28th, KIAS workshop