Stratos Systems - Iowa State University

Download Report

Transcript Stratos Systems - Iowa State University

Vertical Launch UAV Project Plan

∞ Construct an unmanned aerial vehicle (UAV) with a camera payload ∞ UAV must autonomously navigate with real-time video feed to ground station ∞ UAV must utilize a pneumatic vertical launch system

Modified Byron’s Pipe Dream Design ∞ ∞ Constraints Wing Design ∞ Airfoil Selection ∞ ∞ 2 Piece Assembly Materials Selection ∞ Composite vs. Film Covering ∞ Landing System ∞ Belly Land (FR) ∞ Tail ∞ Fuselage ∞ Camera Considerations

∞ Trade-off ∞ Gas ∞ Electric ∞ Propulsion Related Requirements ∞ 40-50 kt cruise ∞ 2 hour endurance ∞ Possible Solutions ∞ Hacker ∞ AXI Gold 5330 ∞ Propeller Hacker A60 L Series AXI Gold 5330

∞ XFLR5 ∞ Methods ∞ Vortex Lattice ∞ Lifting Line ∞ Output ∞ Cl, Cd ∞ Very efficient for low Reynolds Numbers ∞ Structures Spreadsheet ∞ Mike Garton ∞ MotoCalc 8 ∞ Engine Requirements

Launch System

∞ Attachment ∞

Avionics

∞ Autopilot switchover

∞ ∞ Endurance ∞ Weight ∞ Power Size – Humvee Capacity ∞ Launch Sequence ∞ Aircraft-Launch System Attachment ∞ Control ∞ Structural Integrity

∞ ∞ ∞ ∞ Piston and Casing Cradle and Carriage Collapsible Legs Pneumatic System

∞ ∞ ∞ Encased piston tube Magnetic piston Rubber piston stop

∞ ∞ ∞ ∞ Magnetic carriage Carriage slides along casing above piston Cradle mounted on carriage Slot for hook attachment on plane

∞ ∞ ∞ Requirements: ∞ To fit within the back cargo hold of a small Humvee ∞ Assemble within ~5 min ∞ Design Solution: ∞ A compact rod-less pneumatic slide Collapsible stabilizing legs Launch from the ground

∞ Design Specifications: ∞ Plane weight 20 lbs ∞ 100 psi air pressure ∞ Final launch height of 100 ft ∞ Using an Excel sheet to predict forces ∞ Determine: ∞ Air tank size ∞ Valve size ∞ Piston stroke length ∞ Etc.

∞ Testing ∞ Pneumatics ∞ Can we launch a 20 lb plane with a 100psi of air to a 100ft? ∞ If not what can we do?

∞ Actual field tests with a test plane ∞ Integration ∞ Plane cradle ∞ Autopilot control

Autopilot Ground Station Video

∞ Autopilot System must: ∞ Be capable of autonomously navigating using waypoint navigation ∞ Support a vertical pneumatic launch ∞ Be capable of monitoring and controlling all systems necessary for flight ∞ Support manual-override control ∞ Be capable of transmitting real-time flight data to the ground control station

∞ Prime Concerns: ∞ GPS, Inertial Measurement Unit, Compass, Gyroscope modules ∞ Ability to interface with aircraft systems ∞ Customization for launch and landing sequence ∞ Cost

∞ Video System must: ∞ Return real-time video to a base station ∞ Be able to distinguish a 6” target at 100’ ∞ Be capable of a minimum 30 minutes of operation ∞ Be designed in a “modular” fashion

∞ Industrial Box style camera ∞ Able to be customized based on lens ∞ Vari-focal Auto-Iris Lens ∞ Manual adjustable focal length 100 ft 100 ft 45° 83 ft X / 83 pixels per foot 70° 140 ft X / 140 pixels per foot

∞ Ground Station must: ∞ Display real-time video as transmitted from the onboard camera ∞ Provide controls necessary for manual override ∞ Be capable of transmitting and receiving flight data to the onboard autopilot system ∞ Be mobile and have the ability to be transported in the back of a military humvee

∞ Separate displays for video and flight data ∞ Components chosen based on onboard systems ∞ Mobile power source based upon requirements of ground station components

∞ Launch to cruise transition ∞ Data transmission and reception range ∞ Flight time

∞ Vertical Launch ∞ How/When does main autopilot take over?

∞ Customize autopilot for launch

∞ Range above 10 miles becomes problematic ∞ Using a directional antenna presents problems ∞ Omni-directional antenna – power consumption problems ∞ Planning on approximately 5W transmitter for video system ∞ Independent transmitter for video system Radius: x Power Required: y Radius: 2x Power Required: y 2 Radius: 3x Power Required: y 3

∞ Original flight time requested by Lockheed Martin: 2hrs ∞ Power consumption for this length of time is problematic ∞ More Batteries = More Weight ∞ Control subsystem power consumption

∞ Project Plan – Sept 27, 2008 ∞ Initial design of each component – Oct 15, 2008 ∞ Physical system build complete – Nov 1, 2008 ∞ Integration of rail launch and aircraft – Nov 30, 2008 ∞ Begin testing of autopilot system – Nov 30, 2008 ∞ Testing of airplane and launch system – Dec 1, 2008 ∞ Final draft plan – Dec 15, 2008