Transcript Slide 1
Graphene bipolar heterojunctions LG VLG VSD LG EL EL CLG S D CBG GLs GLs 1 mm VBG Local Gate Region -Density in GLs can be n or p type G (e2/h) 7 VLG = -10 V 5 -Density in LGR can be n’ or p’ type 3 We expect two Dirac minima! Oezyilmaz, Jarrilo-Herrero and Kim PRL (2007) Related work by Huard et al. PRL (2007) 1 -50 -25 0 25 VBG (V) 50 Graphene heterojunction Devices p n’ p 1 mm G (e2/h) potential 50 2 4 6 8 10 12 VBG (V) 25 0 n-p’-n x n n’ n n p n n-n’-n potential -25 -50 p-p’-p -5 0 VLG (V) 10 5 potential -10 p-n’-p 5 x p p’ p p n p 3 1 -50 -25 0 25 VBG (V) 50 potential G (e2/h) 7 x x Ballistic Quantum Transport in Graphene Heterojunction Graphene NPN junctions Klein Tunneling Novoselov et al, Nat. Phys (2006) Transmission coefficient Ttot Collimation: (resonance) f k2x = pn/L potential Perfect transmission n p n x np=1x1012 cm2 np=3x1012 cm2 nn=0.5x1012 cm2 Realistic Graphene Heterojunction Requirements for Ballistic pn junctions Mean free path < 100 nm Smooth electrostatic n ~ 1012 cm-2 lF ~ 30 nm ddielectric ~ 20 nm L ~ 100 nm • Long Mean free path -> Ballistic conduction • Large electric field -> Small d -> promote resonance transmission T SEM image of device Tunneling through smooth pn junction electrode f graphene 1 mm Cheianov and Fal’ko (2006) Zhang and Fogler (2008) Mean free path ~ 50 nm Tunneling through Classically Forbidden regime T 20 nm Transport Ballistic Graphene Heterojunction Young and Kim (2008) electrode nnn VBG = 90 V graphene 12 ppp 10 VBG = -90 V PN junction resistance Cheianov and Fal’ko (‘06) 8 npn pnp See also Shavchenko et al and Goldhaber-Gordon’s recent preprint Conductance Oscillation: Fabry-Perot n1,, k1, n2,, k2 T T R k1 /k2= sinq’ / sinq T q Df= 2L /cosq’ 4 18 V L R* n1,, k1, 6 -18 V -10 -8 -6 -4 -2 VTG (V) 0 0 2 4 6 8 10 Conductance (mS) 1 mm Quantum Oscillations in Ballistic Graphene Heterojunction Resistance Oscillations 5 n1,, k1, 1 0 -1 T FB R L R* T n1,, k1, q Magnetoresistance Oscillations (B=0) 0 FB=B L2 sinq ’/cosq ’ Aharonov-Bohm phase: 2 B (T) nback (1012 cm2) n2,, k2 dR/dntop ( h/e2 10-15 cm-2) T -5 -5 0 ntop (1012 5 cm2) dG/dntop (e2/h 10-15 cm-2) -1 1 0 0 -2 0 2 4 6 VT (V) ) 8 10 (VB=-50 V) Resonant Magneto-Oscillations in Graphene Heterojunctions Exp • Ballistic pn junction • Collimation See also Shytoy et al., arXiv:0808.0488 Theory Two fitting parameters: lLGR = 27 nm; lGL= 50 nm Graphene Electronics Conventional Devices FET Band gap engineered Graphene nanoribbons Graphene quantum dot (Manchester group) Nonconventional Devices Graphene Veselago lense Cheianov et al. Science (07) Graphene Spintronics Graphene psedospintronics Son et al. Nature (07) Trauzettel et al. Nature Phys. (07) Conclusions • Carbon nanotube FET is mature technology demonstrating substantial improvement over Si CMOS • Controlled growth and scaling up of CNTFET remains as a challenge • Graphene provides scaling up solution of carbon electronics with high mobility • Controlled growth of graphene and edge contol remains as a challenge • Novel quantum device concepts have been demonstrated on graphene and nanontubes Acknowledgement Meninder Purewal (nanotube) Kirill Bolotin (suspended graphene) Melinda Han (nanoribon) Dmitri Efetov (graphene heterojuncton) Andrea Young (graphene heterojunction) Barbaros Oezyilmaz (now at NSU) Pablo Jarrilo-Herrero (now at MIT) Collaboration: Horst Stormer Funding: Kim Group Picnic: 2008 Central Park, New York Variable Range Hopping in Graphene Nanoribbons E EF T 1 d T0 1 Gmax G0 exp T d: dimensionality Conductance (mS) 100 15 nm 22 nm 3 31 nm 37 nm 1 48 nm 0 70 nm -2 0.0 0.2 0.4 T-1/3 0.6 31 nm 37 nm 0 48 nm -1 -1 -1 60 15 nm 22 nm 1 ln(R) ln(R) ln(R) 48 nm 40 2 2 2 20 Arrhenius plot 1D VRH 31 nm 0 1 Vg (V) 3 37 nm 4K 15K 100K 200K 300K 0 2D VRH 15 nm 22 nm 1 10 0.1 x 3 W = 37 nm 70 nm -2 0.0 0.2 0.4 T-1/2 70 nm -2 0.0 0.1 0.2 T-1 Graphene Quantum Hall Edge State Conduction LG EL GLs GLs EL 1 mm Local Gate Region simple model (following Haug et al) Oezyilmaz, et al., PRL (2007) See also Related work by Williams et al. Science (2007) Temperature Dependent Oscillations 12 nnn VBG = 90 V Conductance (mS) 10 8 npn 6 18 V 4 -10 -8 -6 -4 VTG (V) -2 0