Transcript Document
Analysis of the Coupled Journal and Thrust Bearing August 21 2004 Hakwoon Kim PREM, Department of Mechanical Engineering Hanyang University, Seoul, Korea Contents 1. 2. Motivation Reynolds Equation - Reynolds equation - Boundary condition - Load capacity and friction torque - Finite element method for a coupled journal and thrust bearing 3. Perturbation - Physical perturbation 4. Analysis Result - Coupled analysis vs separate analysis of FDB of a 3.5 " HDD - Reynolds BC vs half-Sommerfeld BC of FDB of a 3.5 " HDD - FDB of a 1" Micro Driver with the effect of recirculation channel - Result and discussion 5. Future Work -2- Motivation Journal bearings Plain areas Plain areas Thrust bearings Journal bearings Thrust bearings Plain areas < Structure of a 3.5" FDB spindle motor > < Structure of a 1" FDB spindle motor > • FDB of HDDs is composed of several sections, which are grooved or plain journal or thrust bearings. • Sometimes, they are connected through recirculation channel. • One section affects the others in terms of pressure and flow of lubricant -3- Reynolds equation Reynolds equation for journal bearing R h3 p h3 p V h h 12 R z 12 z 2 t h C1 Journal p pa at z L / 2 y R Sleeve e C2 r1 V p pa at z L / 2 Line of Centers p0, z p2 , z z - filmthickness : h c e cos F x L/2 2 0 -L/2 < Journal bearing geometry > -4- Reynolds equation Reynolds equation for thrust bearing 1 h3 p r r r 12 r r h3 p V h h 12 r 2 r t h h ( r , ) V Thrust r p pa at r ri z Thrust Pad p pa at r ro pr ,0 pr ,2 ri - filmthickness : h c ro < Thrust bearing geometry > -5- r Boundary condition y r1 Journal C1 Sleeve e C2 p p p 2 R * z Line of Centers F < Full Sommerfeld BC > < Half Sommerfeld BC > < Reynolds BC > x The solution for a full 360 degree journal bearing leads to skew-symmetric pressure distribution. The pressures in the divergent film are all lower than ambient pressure. The negative pressure can be neglected with the fact that the saturation pressure is similar to ambient pressure But it violates the continuity of mass flow and pressure gradient at the outlet end of the pressure curve. p p p , 0 at * The better boundary condition is Reynolds BC, where a * can be determined numerically by the iterative method. -6- Load capacity and friction torque Use the finite element method to solve Reynolds equation and to determine the pressure distribution Load capacity, friction torque and attitude angle of journal bearing Fx p cos dA Fy p sin dA Fy F tan 1 Fx W Fx2 Fy2 T f R xy dA where, xy h p R 2 x h Load capacity, friction torque of thrust bearing Wz p dA h p r 2 r drd T f h 2 r -7- Finite element method for a coupled journal and thrust bearing Calculate the finite element matrix for journal and thrust bearing appropriately Assemble the element matrix to global matrix Apply the BC at the external boundaries At the internal boundaries, pressure and mass continuity is automatically conserved In case of Reynolds BC, the global finite element equation is iteratively solved until Reynolds BC is satisfied -8- a Part 1 Part 2 b Part 3 a External ambient pressure p pa Interface p part _ i p part _ j Periodic boundary p 0 p 2 on a on b Perturbation In the case of coupled journal and thrust bearing, the boundary value problem can not be defined because the perturbed pressure px , py , px , py , ... on the interface between the journal and the thrust bearing is not defined Physical perturbation has to be used for this case Dynamic coefficients are calculated by comparing the change of bearing reaction forces and moments with respect to the change of translational and angular displacements and velocities in each direction -9- Perturbation 3.1 Perturbation for journal bearing Step Step Step h 2 : Calculate the initial load and moment with respect to the new coordinate system 3 : Calculate the loads and moments considering perturbed displacements and velocities, i.e. ex , ey , x , y , ex , ey , x , y , Step ey 1 : Set the coordinate system considering attitude angle calculated by initial static analysis 4 : Calculate the dynamic characteristics from following equation K load load , C displacem ent velocity - 10 - c1 c2 F0 Y ex e x Fy 2 Fx 2 K xx Fx1 X Fy 2 Fy1 Fx 2 Fx1 , K yx ex ex < Geometrical description of physical perturbation by ex > Perturbation 3.2 Perturbation for thrust bearing Z Step 1 : Set the coordinate system Step 2 : Calculate the initial load and moment with respect to the fixed coordinate system Step 3 : Calculate the loads and moments considering perturbed displacements and velocities, i.e. ez , x , y , ez , x , y , Step 4 : Calculate the dynamic characteristics K load load , C displacem ent velocity - 11 - Fz2 e z Thrust h0 Fz1 Thrust pad K zz Fz 2 Fz1 ez < Geometrical description of physical perturbation by ez > h Perturbation Merits of physical perturbation – It is not necessary to consider boundary values of perturbation equations – It can handle any case of hydrodynamic bearing including the coupled journal and thrust bearing – The radial-and-axial coupled stiffness and damping can be observed Demerits of physical perturbation – This method is dependent on the amount of perturbation, i.e., perturbed displacement and velocity – It needs fine mesh for a good estimate – It takes longer computational time than mathematical perturbation method - 12 - Analysis result 4.1 Coupled analysis vs. separate analysis of FDB of a 3.5 " HDD (1) (2) (3) (6) (4) (5) (7) (9) (8) (1) (2) (3) (4) (5) (6) (7) (8) (9) Plain region in journal Upper journal bearing Plain region in journal Lower journal bearing Plain region in journal Upper thrust bearing Plain region in journal Lower thrust bearing Plain region in thrust ( Plain 1 ) ( Plain 3 ) ( Plain 5 ) ( Plain 7 ) ( Plain 9 ) - 13 - Analysis result Specification of analysis model Bearing Width [mm] Upper Journal Lower Journal 2.6 (Top:1.4, Bottom:1.2) 2.4 (Top:1.2, Bottom:1.2) Upper Thrust Lower Thrust - ID and OD of Thrust [mm] - Groove Pattern Herringbone Herringbone Groove depth [m] 6.0 10.0 Groove Angle [deg] 20.0 20.0 Clearance [m] 2.5 9.0 Radius of Journal [mm] 2.0 - Number of groove 6 12 0.3333 0.3333 Groove to Groove and Ridge Ratio : Wg Wg WR ID : 5.0, OD : 6.8 Width of Plain Area [mm] Upper Plain of Journal (Plain 1) : 0.4 ( Depth : 0.1 ) Center Plain of Journal (Plain 3) : 2.2 ( Depth : 0.1 ) Lower Plain of Journal (Plain 5) : 0.4 ( Depth : 0.1 ) Viscosity(25 deg C) [Pas] 0.016 Rotating Speed [rpm] 7200 - 14 - Inner Plain : 0.5 ( Depth : 0.03 ) Outer Plain : 0.2 ( Depth : 0.03 ) ID : 4.0, OD : 6.8 Inner Plain : 0.5 ( Depth : 0.03 ) Outer Plain : 0.2 ( Depth : 0.03 ) Analysis result Analysis model and result of pressure distribution < Pressure distribution> < Mesh for finite element method > Number of node = 6121 [EA] Number of element = 5508 [EA] Element type : 4-node quadrilateral element - 15 - Analysis result Result comparison between coupled analysis and separate analysis • Pressure distribution Eccentricity ratio = 0.1 Max pressure in upper journal = 3.344 [MPas] Max pressure in lower journal = 3.314 [MPas] < Coupled analysis of journal bearing > Eccentricity ratio = 0.1 Max pressure in upper journal = 3.124 [MPas] Max pressure in lower journal = 2.934 [MPas] < Separate analysis of journal bearing > - 16 - Analysis result Clearance = 9.0 [㎛] Max pressure in upper journal = 509.1 [KPas] < Coupled analysis of upper thrust bearing > - 17 - Clearance = 9.0 [㎛] Max pressure in upper journal = 110.2 [KPas] < Separate analysis of upper thrust bearing > Analysis result Clearance of lower thrust = 9.0 [㎛] Clearance of center plain = 500 [㎛] Max pressure in upper journal = 529.8 [KPas] < Coupled analysis of lower thrust bearing > - 18 - Clearance = 9.0 [㎛] Max pressure in upper journal = 125.3 [KPas] < Separate analysis of lower thrust bearing > Analysis result • Static characteristics Part Coupled analysis Separate analysis Load capacity [N] Friction torque [Nm] Load capacity [N] Friction torque [Nm] Plain 1 1.06776e-005 2.42556e-006 - - Upper journal 3.04791e+000 5.31127e-004 3.00549e+000 5.30798e-004 Plain 3 2.19960e-003 1.33409e-005 - - Lower journal 2.60350e+000 4.89889e-004 2.51866e+000 4.89858e-004 Plain 5 7.16112e-004 2.42565e-006 - - Upper thrust -1.18044e+001 1.99011e-004 5.42952e-001 1.98735e-004 Plain 7 4.27706e-005 1.41458e-005 - - Lower thrust 1.47111e+001 2.33986e-004 1.05478e+000 2.33815e-004 Plain 9 2.94034e+000 1.91859e-007 - - - 19 - Analysis result • Dynamic characteristics Stiffness coefficient comparison Coupled analysis Separate analysis Total system Upper journal Lower journal Thrust part Upper journal Lower journal Upper thrust Lower thrust part Kxx 1.5508e+007 8.3079e+006 7.2027e+006 0.0000e+000 8.3142e+006 7.2140e+006 0.0000e+000 0.0000e+000 Kyy 1.5295e+007 8.1344e+006 7.1635e+006 0.0000e+000 8.1451e+006 7.1677e+006 0.0000e+000 0.0000e+000 Kzz 5.9278e+005 0.0000e+000 0.0000e+000 5.9278e+005 0.0000e+000 0.0000e+000 1.5332e+005 4.3561e+005 Damping coefficient comparison Coupled analysis Separate analysis Total system Upper journal Lower journal Thrust part Upper journal Lower journal Upper thrust Lower thrust part Cxx 3.9199e+004 2.1447e+004 1.7725e+004 0.0000e+000 2.1015e+004 1.7671e+004 0.0000e+000 0.0000e+000 Cyy 3.9184e+004 2.1402e+004 1.7755e+004 0.0000e+000 2.0922e+004 1.7701e+004 0.0000e+000 0.0000e+000 Czz 2.1473e+005 0.0000e+000 0.0000e+000 2.1473e+005 0.0000e+000 0.0000e+000 1.3796e+002 5.9448e+003 - 20 - Analysis result 4.2. Reynolds BC vs half-Sommerfeld BC of FDB of a 3.5 " HDD (1) (2) (3) (6) (4) (5) (7) (9) (8) (1) (2) (3) (4) (5) (6) (7) (8) (9) Plain region in journal Upper journal bearing Plain region in journal Lower journal bearing Plain region in journal Upper thrust bearing Plain region in journal Lower thrust bearing Plain region in thrust ( Plain 1 ) ( Plain 3 ) ( Plain 5 ) ( Plain 7 ) ( Plain 9 ) - 21 - Analysis result Specification of analysis model Bearing Width [mm] Upper Journal Lower Journal 2.4 (Top:1.2, Bottom:1.2) 2.4 (Top:1.2, Bottom:1.2) Upper Thrust Lower Thrust - ID and OD of Thrust [mm] - Groove Pattern Herringbone Spiral Groove depth [m] 6.0 10.0 Groove Angle [deg] 20.0 20.0 Clearance [m] 2.5 9.0 Radius of Journal [mm] 2.0 - Number of groove 6 12 0.3333 0.3333 Groove to Groove and Ridge Ratio : Wg Wg WR ID : 4.0, OD : 7.2 Width of Plain Area [mm] Upper Plain of Journal (Plain 1) : 0.4 ( Depth : 0.1 ) Center Plain of Journal (Plain 3) : 2.2 ( Depth : 0.1 ) Lower Plain of Journal (Plain 5) : 0.4 ( Depth : 0.1 ) Viscosity(25 deg C) [Pas] 0.016 Rotating Speed [rpm] 7200 - 22 - - ID : 4.0, OD : 7.2 - Analysis result < Mesh for finite element method > - 23 - Number of node = 6121 [EA] Number of element = 5508 [EA] Element type : 4-node quadrilateral element Analysis result Result comparison between using half Sommerfeld BC and Reynolds BC • Pressure distribution Max pressure in FDB = 2.984 [MPas] < Analysis result using half Sommerfeld BC > - 24 - Max pressure in FDB = 3.036 [MPas] < Analysis result using Reynolds BC > Analysis result Eccentricity ratio = 0.1 Max pressure in upper journal = 2.984 [MPas] Max pressure in lower journal = 2.971 [MPas] < Analysis result using half Sommerfeld BC > - 25 - Eccentricity ratio = 0.1 Max pressure in upper journal = 3.036 [MPas] Max pressure in lower journal = 3.105 [MPas] < Analysis result using Reynolds BC > Analysis result Clearance of lower thrust = 9.0 [㎛] Max pressure in upper journal = 39.467 [KPas] < Analysis result using half Sommerfeld BC > - 26 - Clearance = 9.0 [㎛] Max pressure in upper journal = 212.350 [KPas] < Analysis result using Reynolds BC > Analysis result Clearance of lower thrust = 9.0 [㎛] Clearance of center plain = 500 [㎛] Max pressure in upper journal = 38.969 [KPas] < Analysis result using half Sommerfeld BC > - 27 - Clearance = 9.0 [㎛] Clearance of center plain = 500 [㎛] Max pressure in upper journal = 213.540 [KPas] < Analysis result using Reynolds BC > Analysis result • Static characteristics Part Half Sommerfeld boundary condition Reynolds boundary condition Load capacity [N] Friction torque [Nm] Load capacity [N] Friction torque [Nm] Plain 1 1.03087e-005 2.42556e-006 9.29389e-006 2.42556e-006 Upper journal 2.65314e+000 4.90212e-004 2.62102e+000 4.90341e-004 Plain 3 2.17523e-003 1.33409e-005 2.17079e-003 1.33409e-005 Lower journal 2.60357e+000 4.89889e-004 2.60358e+000 4.89889e-004 Plain 5 7.70566e-004 2.42565e-006 7.68795e-004 2.42565e-006 Upper thrust - 1.31307e-001 2.62797e-004 - 2.91657e+000 2.55022e-004 Plain 7 0.00000e+000 1.41458e-005 3.06280e-004 1.41459e-005 Lower thrust 1.31140e-001 2.64862e-004 2.93510e+000 2.72671e-004 Plain 9 4.87674e-001 6.06371e-007 2.67233e+000 6.06371e-007 - 28 - Analysis result • Dynamic characteristics Stiffness coefficient comparison Half Sommerfeld boundary condition Reynolds boundary condition Total system Upper journal Lower journal Thrust part Total system Upper journal Lower journal Thrust part Kxx 1.4582e+007 7.3819e+006 7.2028e+006 0.0000e+000 1.4627e+007 7.4270e+006 7.2032e+006 0.0000e+000 Kyy 1.4501e+007 7.3406e+006 7.1633e+006 0.0000e+000 1.4546e+007 7.3860e+006 7.1631e+006 0.0000e+000 Kzz 2.2979e+006 0.0000e+000 0.0000e+000 2.2979e+006 2.5775e+006 0.0000e+000 0.0000e+000 2.5775e+006 Damping coefficient comparison Half Sommerfeld boundary condition Reynolds boundary condition Total system Upper journal Lower journal Thrust part Total system Upper journal Lower journal Thrust part Cxx 3.5855e+004 1.8100e+004 1.7728e+004 0.0000e+000 3.5468e+004 1.7712e+004 1.7729e+004 0.0000e+000 Cyy 3.5909e+004 1.8128e+004 1.7754e+004 0.0000e+000 3.5517e+004 1.7737e+004 1.7753e+004 0.0000e+000 Czz 2.0680e+005 0.0000e+000 0.0000e+000 2.0679e+005 1.0397e+004 0.0000e+000 0.0000e+000 - 29 - 1.0397e+004 Analysis result 4.3. FDB of a 1" Micro Driver with the effect of recirculation channel (1) (8) (2) (3) (4) (5) (9) (1) (2) (3) (4) Plain region in journal Upper journal bearing Plain region in journal Lower journal bearing ( Plain 1 ) (5) (8) (9) Plain region in journal Thrust bearing Lower plain ( Plain 5 ) ( Plain 3 ) ( Plain 9 ) - 3 recirculation channels between upper thrust bearing and lower plain thrust bearing - 30 - Analysis result Specification of analysis model Bearing Width [mm] Upper Journal Lower Journal 1.76 (Top:0.96, Bottom:0.8) 1.6 (Top:0.8, Bottom:0.8) Thrust Lower Plain - ID and OD of Thrust [mm] - ID : 4.6, OD : 6.0 ID : 0, OD : 1.25 Groove Pattern Herringbone Spiral Plain Groove depth [m] 5.0 15.0 0 Groove Angle [deg] 21.0 20.0 Clearance [m] 4.0 15.0 Radius of Journal [mm] 1.25 Number of groove 16 20 0.41667 0.5 Width of Plain Area [mm] Upper Plain of Journal (Plain 1) : 0.1 ( Depth : 0.1 ) Center Plain of Journal (Plain 3) : 1.0 ( Depth : 0.1 ) Lower Plain of Journal (Plain 5) : 0.1 ( Depth : 0.1 ) Inner Plain : 1.05 ( Depth : 0 ) Viscosity(25 deg C) [Pas] 0.016 Rotating Speed [rpm] 4200 Groove to Groove and Ridge Ratio : Wg Wg WR 500 - - 31 - - Analysis result Analysis model and result of pressure distribution < Pressure distribution in FDB> < Mesh for finite element method > Number of node = 11041 [EA] Number of element = 10000 [EA] Element type : 4-node quadrilateral element - 32 - Analysis result Result comparison between FDB with recirculation channel and FDB without recirculation channel • Pressure distribution Eccentricity ratio = 0.1 Max pressure in upper journal = 302.960 [KPas] Max pressure in lower journal = 297.770 [KPas] < Journal bearing without recirculation channel> - 33 - Eccentricity ratio = 0.1 Max pressure in upper journal = 292.080 [KPas] Max pressure in lower journal = 269.470 [KPas] < Journal bearing with recirculation channel> Analysis result Clearance = 15.0 [㎛] Max pressure in thrust = 208.64 [KPas] < Thrust bearing without recirculation channel> Clearance = 15.0 [㎛] Max pressure in thrust = 209.03 [KPas] < Thrust bearing with recirculation channel> - 34 - Analysis result Clearance = 500.0 [㎛] Max pressure in lower plain = 56.634 [KPas] < Lower plain bearing without recirculation channel> - 35 - Clearance = 500.0 [㎛] Max pressure in lower plain = 19.636 [KPas] < Lower plain bearing with recirculation channel> Analysis result Clearance = 500.0 [㎛] Max pressure in lower plain = 56.634 [KPas] < Lower plain bearing without recirculation channel> - 36 - Clearance = 500.0 [㎛] Max pressure in lower plain = 19.636 [KPas] < Lower plain bearing with recirculation channel> Analysis result • Static characteristics Part Without recirculation channel With recirculation channel Load capacity [N] Friction torque [Nm] Load capacity [N] Friction torque [Nm] Lower thrust 3.36126e-001 4.95959e-005 3.37344e-001 4.95973e-005 Plain 1 2.68073e-006 2.84081e-008 3.05376e-006 2.84082e-008 Upper journal 1.82473e-001 3.12260e-005 1.82550e-001 3.12290e-005 Plain 3 9.45037e-006 2.84078e-007 9.45092e-006 2.84078e-007 Lower journal 1.48531e-001 2.83763e-005 1.48531e-001 2.83763e-005 Plain 5 5.13616e-008 2.84076e-008 6.72910e-008 2.84076e-008 Lower plain 1.13197e-001 5.39740e-008 9.59665e-002 5.39740e-008 - 37 - Analysis result • Dynamic characteristics Stiffness coefficient comparison Without recirculation channel With recirculation channel Total system Upper journal Lower journal Thrust part Total system Upper journal Lower journal Thrust part Kxx 4.9937e+005 2.6482e+005 2.3455e+005 0.0000e+000 5.0575e+005 2.7123e+005 2.3453e+005 0.0000e+000 Kyy 5.0945e+005 2.7686e+005 2.3259e+005 0.0000e+000 5.0132e+005 2.6875e+005 2.3258e+005 0.0000e+000 Kzz 6.3276e+004 0.0000e+000 0.0000e+000 6.3276e+004 8.1083e+004 0.0000e+000 0.0000e+000 8.1083e+004 Damping coefficient comparison Without recirculation channel With recirculation channel Total system Upper journal Lower journal Thrust part Total system Upper journal Lower journal Thrust part Cxx 2.6797e+003 1.4937e+003 1.1860e+003 0.0000e+000 2.7101e+003 1.5241e+003 1.1859e+003 0.0000e+000 Cyy 2.6909e+003 1.4998e+003 1.1910e+003 0.0000e+000 2.7219e+003 1.5309e+003 1.1910e+003 0.0000e+000 Czz 1.8438e+005 0.0000e+000 0.0000e+000 1.8438e+005 1.0664e+003 0.0000e+000 0.0000e+000 1.0664e+003 - 38 - Result and discussion Coupled analysis vs. separate analysis – High pressure of the journal bearing is transmitted to the thrust bearing, which results in high pressure distribution in the thrust bearing in the coupled analysis. – It changes the load capacity and flying height of thrust bearing. Half-Sommerfeld vs. Reynolds BC – Half-Sommerfeld BC overestimates the cavitation area, which underestimates the pressure, load capacity of the thrust bearing. – Reynolds BC describes the cavitation, load capacity of bearing realistically. Micro Drive with recirculation channels – Recirculation channel allows the flow between the upper and lower thrust bearing, and it maintain the same pressure level between them – It decreases the pressure distribution of lower thrust bearing, which results in the small load capacity of lower thrust bearing - 39 - Future work Get a feedback and verify the static and dynamic result from HYBAP v3.0 using various model - 40 -