Golubev Yu.F., Grushevskii A.V., Koryanov V.V., Tuchin A.G

Download Report

Transcript Golubev Yu.F., Grushevskii A.V., Koryanov V.V., Tuchin A.G

To the adaptive multibody gravity assists
tours design in Jovian system for the
Ganymede Landing. Grushevskii A.
Keldysh Institute of Applied Mathematics
Russian Academy of Sciences
Grushevskii A.V.,
Golubev Yu.F, Koryanov V.V., Tuchin A.G.
To the adaptive multibody gravity assist tours
design in Jovian system for the Ganymede
Landing
24th International Symphosium on Space Flight
Dynamics,
May 5-9, 2014
ESA- JUICE MISSION
ESA- JUICE Mission Debut
Interplanetary partGanymede FlybyJOIG&C-Flyby Sequence
GOI
Roskosmos part: +Ganymede Landing
 Flexible JOI Data
 Flexible G&C-Flyby Sequence
 GOI
 Ganymede Circular Orbit
 Landing
MAIN PROBLEMS
-Min Delta V (ballistic scenarios, if it’s possible)
-Duration
-Min V-infinity relative Ganymede
Roscosmos part: Ganymede Landing.
Resonance beginning. Typical scenario
Moon
Ganymede
Ganymede
Ganymede
Ganymede
Ganymede
Ganymede
Orbital period of
SC after the
satellite flyby
rated to
satellite’s orbital
period
6
5
4
3
2.5
2
Number of
rounds after
a flyby
1
2
1
1
2
1
ESTK complex of Keldysh IAM RAS Ballistic Center
Navigation and Ancillary Information Facility
(NAIF) - NASA
Refined Flyby Model
Quasi-Singularity of the Radiation Hazard
Joining to Jovian System After Interplanetary Part
 Time of Jovian sphere of action
2029/06/03 09:25:10 UTC
 Flyby hyperbola ( J2000)
 Semimajor axe, km 5252.572592
 Eccentricity 1.163115
 Inclination 23.44 grad
 V-Infinity, km/s 4.91
 Pericenter Time 2029/08/29 17:20:35 UTC
 Pericenter altitude 12.5 RJ
1 GAM (near Ganymede)
Callisto
Europa
IO
Ganymede
Time of minimal distance reaching
Minimal distance
Height of pericenter of flyby hyperbola
Asymptotic velocity
Change of velocity relatively to Jupiter
Period after flyby of GANYMEDE
Distance in pericenter rated to Jupiter’s radius
Eccentricity after flyby
Velocity in pericenter after flyby
Velocity in apocenter after flyby
2030/04/25 12:55:52
18.119618 1000 km
15.485618 1000 km
6.794698
-0.040897
42.915096 days
11.503787
0.767555
16.511564
2.171381
Vx=0.000755, Vy= 0.005958, Vz=0.003207, |V|=0.006808
2 GAM
Time of minimal distance reaching
Minimal distance
Height of pericenter of flyby hyperbola
Asymptotic velocity
Change of velocity relatively to Jupiter
Period after flyby of GANYMEDE
Distance in pericenter rated to Jupiter’s radius
Eccentricity after flyby
Velocity in pericenter after flyby
Velocity in apocenter after flyby
2030/06/07 11:18:06
13.702676 1000 km
11.068676 1000 km
6.761808
-0.046064
35.762581 days
11.268810
0.742874
16.565945
2.443969
Vx-0.004218, Vy=0.002570, Vz=0.001342, |V|=0.005118
3 GAM
Time of minimal distance reaching
Minimal distance
Height of pericenter of flyby hyperbola
Asymptotic velocity
Change of velocity relatively to Jupiter
Period after flyby of GANYMEDE
Distance in pericenter rated to Jupiter’s radius
Eccentricity after flyby
Velocity in pericenter after flyby
Velocity in apocenter after flyby
2030/08/18 00:23:08
9.464318 1000 km
6.830318 1000 km
6.747614
-0.057707
28.610065 days
10.908290
0.711178
16.683664
2.815964
Vx=-0.014865, Vy=0.012230, Vz=0.004934, |V|=0.019872
4 GAM
Time of minimal distance reaching
Minimal distance
Height of pericenter of flyby hyperbola
Asymptotic velocity
Change of velocity relatively to Jupiter
Period after flyby of GANYMEDE
Distance in pericenter rated to Jupiter’s radius
Eccentricity after flyby
Velocity in pericenter after flyby
Velocity in apocenter after flyby
2030/09/15 15:30:37
6.338138 1000 km
3.704138 1000 km
6.724214
-0.078352
21.457549 days
10.356952
0.667801
16.903565
3.366919
Vx=-0.003701, Vy=0.003109, Vz=0.001477, |V|=0.005055
5 GAM
Time of minimal distance reaching
Minimal distance
Height of pericenter of flyby hyperbola
Asymptotic velocity
Change of velocity relatively to Jupiter
Period after flyby of GANYMEDE
Distance in pericenter rated to Jupiter’s radius
Eccentricity after flyby
Velocity in pericenter after flyby
Velocity in apocenter after flyby
2030/10/07 02:25:05
8.641858 1000 km
6.007858 1000 km
6.746652
-0.068217
17.881290 days
9.929413
0.640352
17.120993
3.753786
Vx=-0.001707, Vy=0.005016, Vz=0.002694, |V|=0.005944
6 GAM
Time of minimal distance reaching
Minimal distance
Height of pericenter of flyby hyperbola
Asymptotic velocity
Change of velocity relatively to Jupiter
Period after flyby of GANYMEDE
Distance in pericenter rated to Jupiter’s radius
Eccentricity after flyby
Velocity in pericenter after flyby
Velocity in apocenter after flyby
2030/11/12 04:29:38
6.051283 1000 km
3.417283 1000 km
6.727114
-0.095345
14.305032 days
9.273662
0.610227
17.552545
4.248788
Vx=-0.006027, Vy=0.003142, Vz=-0.000433, |V|=0.006811
Quasi-Singularity of the Radiation Hazard
Gravity-assist sequence. Effective Type T1
f e, 1/(cм2c)
RADIATION HAZARD PROBLEM (M. Podzolko e.a., SINP MSU Data)
10
9
10
8
> 0.5 MэB
10
7
>2
>5
106
10
5
10
4
3
Дoзa, paд/cyтки
106
10
10
5
10
4
10
3
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
20
22
24
26
28
30
32
34
L, RJ
1 г/cм
2
2.2
5
102
101
10
0
2
4
6
8
10
12
14
16
18
L, RJ
Typical radiation hazard analysis on the ENDGAME phase
Dynamics of the radiation accumulation
Typical radiation hazard analysis on the ENDGAME phase
Dynamics of the radiation accumulation- zoom scale
Dynamics of the radiation accumulation- on one
orbit. Quasi-singularity
Period after flyby of GANYMEDE
Distance in pericenter rated to Jupiter’s radius
Distance in apocenter rated to Jupiter’s radius
42.9 days
11.5
98.0
Ti (Tisserand’s Criterion)
Restricted 3 Body Problem
Jacobi Integral J Tisserands Parameter T
(see R.Russel, S.Campagnola)
J
1
2
 2 a(1  e ) cos i  T
a
J
T  3(1   )  v
2

3v
2

“Isoinfine” (“Captivity”)
Tisserand-Poincare graph
Rp-T
(A.Labunskii, O.Papkov, K.Sukhanov axes Ra-Rp- the same)
(N.Strange, J.Sims, K.Kloster, J.Longuski axes
TP-strategy(axes Ra-Rp
in RJ
)
CB-Classic Billiard
Duplex Shutting
CGB-Classic Gravitational Billiard
Using PHASE BEAM method of Gravity
Assists Sequences Determination
Previous front trees of Tisserand graph
for Russian “Laplace” mission
Previous Tisserand Graph for the
Roscosmos “Laplace” mission
Phase Selection
• We need the criterion of selection of
encounters for V-infinity reduction
• The “Magic” code is:
“Ganymede”+”Not Ganymede”+”Ganymede”
Or “G”^”C”^…^”C”^”G”
Rebounds+ReRebounds
(axes Ra-Rp)
Real Phase Searching(axes Ra-Rp in
RJ)
Rebounds
Rebounds-ReRebounds
“JUICE” by ESA
Tisserand-Poincare typical graph
Research basement
 Orbit correction algorithm preceding
spacecraft’s Jovian moons gravity
assists
 Gravity assists refined model
 ESTK KIAM RAS Ballistic centre
complex
 Navigation and Ancillary Information
Facility (NAIF) - NASA ephemeris —
will be refined during JUICE by ESA
Fly-by sequence selection strategy
 Lambert problem solution;
 The phase-beams method;
 Delta V minimizations;
 Gravity-assist parameters permanent
corrections;
 Simulations results are presented.
Gravity-assist sequence. Effective Type T1
Part II of radiation-comfortable tour
Low-radiation sequence type
T2
Type: Hyper-low-radiation,
Expensive Delta V
• T3
«Endgame»
(S.Campagnola, R.Russel, 2011)
Virtual Trajectories Splitting
After Swing-by
Applications for Another Kinds of Flybys
Callisto & Ganymede
 Tour design problem lends itself well
to optimization schemes
Callisto & Ganymede assists
us to minimize fuel
requirements
THANK YOU
FOR YOUR ATTENTION !