Privacy *Preserving Public Auditing for Data Security in

Download Report

Transcript Privacy *Preserving Public Auditing for Data Security in

Privacy –Preserving Public Auditing for Data Security in Cloud Computing

B97201006 林楷軒

Outline

• Overview of this paper • Motivation and Initialization • Detailed Mechanism • Some Comments • Reference

Overview of this paper

Overview of this paper

In one sentence, Ensure your data authentication in cloud?

• Properties of cloud storage • • • Users always have availabe and scalable space  → Need not worry about running out of space Users need not have real physical storage media  → Need not spend money on equipments

Data is not near your hand

 → Data not accessible when network failure → How to make sure the data authentication?

Overview of this paper

Some instances threatening your data in cloud • Cloud Storage Provider deletes your data that you seldom access • Cloud Storage Provider hides data loss incidnets • Internal communication error in clusters of computers in Cloud(Amazon 2008,June 20)

Overview of this paper

The solution is: A third party checks you data authentication (Self-checking is too tiring) • • • • Requirements: Checks authentication while preserving privacy [Exclusive]First model able to support scalable and efficient auditing [Exclusive]Security justified by concrete experiments [Mice.]No local copy of data, no more burden to users

Motivation and Initialization

Motivation and Initilization Motivation: Check the authentication of data • • • Nonmenclature Explanation(1): TPA:Third Party Auditor User:… CSP:Cloud Storage Provider 鑑識官 鄉民 Amazon

Motivation and Initilization • • • Nonmenclature Explanation(2) Public key: ( 封裝 ) keys for locking a box Private key: ( 開箱 ) keys for unlocking a box MAC: ( content 檢查碼 ) message authentication code.

Each piece of data has a MAC code, derived from its • • 簡單舉例 (MD5) MD5("The quick brown fox jumps over the lazy dog") 9e107d9d372bb6826bd81d3542a419d6 MD5("The quick brown fox jumps over the lazy dog.") e4d909c290d0fb1ca068ffaddf22cbd0

Motivation and Initilization • • • Phase Nonmenclature: User KeyGen: generate the key SigGen: gengerate the verification of meta data(MAC) CSP:Cloud Storage Provider GenProof: generate proof of data correctness TPA:Third Party Auditor VerifyProof:Audit proof from CSP(Amazon)

Have a little break...

Motivation and Initilization • Example One: Privacy Leaking 鄉民: – – – – 生成一把鑰匙,丟給鑑識官 製造MAC,丟給Amazon 上傳檔案給Amazon 鄉民刪除在自己硬碟上的檔案 • 檢查方式 – 鑑識官向Amazon要檔案(檔案外洩啦…) – 鑑識官自行生成MAC,檢查檔案

Motivation and Initilization • Example Two: Finitely many checking times 鄉民: – – – – 生成N把鑰匙,丟給鑑識官 製造N種鑰匙的MAC,丟給鑑識官 上傳檔案給Amazon 鄉民刪除在自己硬碟上的檔案 • 檢查方式 – – – 鑑識官給Amazon鑰匙,並要求回傳對應MAC值 Amazon回傳對應的MAC值給鑑識官 鑑識官生成一次檢查碼,跟Amazon上的MAC做比對

Motivation and Initilization

Item

Number of keys Key is given to Mac is stored by … File is transferred to…

Example 1

1 鑑識官 Amazon Amazon and 鑑識官

Example 2

N 鑑識官 鑑識官 Amazon 優缺點分析: 1. Example1 鑑識官 : 擁有鑰匙,所以可以無限次檢查檔案的完整與否 Amazon: 必須上傳檔案給鑑識官,暴露隱私,也增加工作量 2. Example2 鑑識官保護了使用者隱私 因為 MAC 是有限的,所以可以偽造答案 下一步,我們要分析: 如先兼顧使用者隱私的同時,也讓鑑識官能無限次檢查檔案?

Detailed Mechanism(?)

這份投影片,我採取的策略: 以定性敘述,取代定量分析

Detailed Mechanism(?)

• • Algebra: Michael Artin Algebra Essential Parts: Group Theory Link: Here

Detailed Mechanism(?)

• • Cryptography: Oded Goldreich Foundations of Cryptography Essential Parts: ???

Link: Here

Detailed Mechanism(?)

• User Initilization 鄉民: – – – – 生成解密鑰匙,丟給鑑識官 生成公開參數,丟給Amazon 生成驗證碼丟給Amazon 鄉民刪除在自己硬碟上的檔案 • 檢查方式 – – – – 鑑識官向Amazon要求檢查部分的檔案 Amazon利用混合的公開參數,對原始檔案Hash Amazon回傳Hash值、驗證碼 鑑識官由解密鑰匙解密Hash,與驗證碼做比對

Detailed Mechanism(?)

我很難相信你聽得懂 = =

Detailed Mechanism(?)

• • • 白話文解釋: 抽樣檔案 驗證碼

a

1 2

a

3

a

4 1 ( ) 1 

f a

2 ( 2 )  3 ( ) 3 

f a

4 ( 4 Amazon回傳的Hash Code 2 )   ( 4 ) • • 關鍵在於: 單獨

f i

 但是整體 1 ( ) 1 

f a

2 ( 2 )  3 ( ) 3 

f a

4 ( 4 )  1 ( ) 1 

g a

2 ( 2 )  3 ( ) 3 

g a

4 ( 4 ) 正確對應關係,只有鑑識官知道(只有他有private key)

Detailed Mechanism(?)

• • • 其他保證的性質: Low Burden on Amazon: Constant large sending block(mathematical analysis…) Theoretically, if amazon misses 1% data, TPA only needs to audit for 460, 300 samples with probability more than 99%, 95% Support for Batch Auditing Mathematical Analysis

a a a a

1 2 3 ..

n

a a a i

1

i

2

i

3 ...

a i n

Detailed Mechanism(?)

• • Mathematical Analysis: Storage Correctness: Amazon can not generate valid response toward TPA without faithfully storing the data Privacy Perserving Guarantee: TPA can not derive users’data conent from the information collected during the auditing porcess

Detailed Mechanism(?)

• Performance Analysis(Real Expriments) Compared with old method(+Privacy) • Batch Processing

Some Comments

Some Comments

• 美中不足(雞蛋裡挑骨頭?) 過於理想化: TPA既不偏坦CSP也不偏袒使用者 • 對於動態資料未清楚說明: (可以套用[8]的結果) • 只能偵測到問題,無法修復 • 99%偵錯率夠嗎?

Reference

Reference

Wikipedia: • Algebra: Michael Artin, 2 nd Edition • Foundations of Cryptography: Oded Goldreich • Some slides from 陳君明老師 • Privacy Preserving Public Auditing for Data Storage Security in Cloud Computing(including some reference)

Q & A?