Bethe Ansatz in AdS/CFT: from local operators to classical

Download Report

Transcript Bethe Ansatz in AdS/CFT: from local operators to classical

Bethe ansatz in String Theory
Konstantin Zarembo
(Uppsala U.)
Integrable Models and Applications, Lyon, 13.09.2006
The European Superstring Theory Network » Members
Co-ordinator
Chalmers University of Technology (Sweden)
Fundamental Physics
Department of Physics* (Karlstad Univ.)
Other
Contractors
Uppsala University (Sweden)
Theoretical Physics
Cosmology Particle Astrophysics and String theory* (Stockholm
Univ.)
The Chancellor, Masters and Scholars of the University of Cambridge
(UK)
Theoretical High Energy Particle Physics Group
King's College (UK)
Theoretical Physics
Queen Mary and Westfield College (UK)
String Theory Group
Theory Group* (Imperial College)
Centre National de la Reserche Scientifique (France)
LTPENS*(École Normale Supérieure)
LPTHE*(Univ. Pierre et Marie Curie)
CRNS
Universiteit van Amsterdam (The Netherlands)
Institute for Theoretical Physics
Institute for Theoretical Physics*(Utrecht Univ.)
Theoretical Physics* (NIKHEF)
Max-Planck-Gesellschaft (Germany)
Quantum Gravity & Unified Theories (Max Planck Institute)
Centre for Mathematical Physics (Univ. Hamburg & DESY)
Universitá degli Studi di Roma "Tor Vergata" (Italy)
String Theory Group
Gruppo Teorico*(Univ. di Roma La Sapienza)
Gruppo Teorico*(Univ. di Pisa)
High Energy Group*(ICTP)
University of Crete
High Energy and Elementary Particle Physics Division
*(Univ. of Athens)
The Hebrew University of Jerusalem (Israel)
Racah Institute of Physics
Dep. of Particle Physics*(Weizmann Inst. of Science)
Dep. of Particle Physics*(Tel Aviv University)
Masarykova univerzita v Brne (Czech Republic)
Institute of Theoretical Physics and Astrophysics
University of Cyprus (Cyprus)
High Energy Physics Group
AdS/CFT correspondence
Maldacena’97
Gubser,Klebanov,Polyakov’98
Witten’98
Planar diagrams and strings
time
‘t Hooft coupling:
String coupling constant =
(kept finite)
(goes to zero)
Strong-weak coupling interpolation
λ
0
SYM perturbation
theory
1+
+
String perturbation
theory
+…
Circular Wilson loop (exact):
Erickson,Semenoff,Zarembo’00
Drukker,Gross’00
Minimal area law in AdS5
Weakly coupled SYM is reliable if
Weakly coupled string is reliable if
Can expect an overlap.
N=4 Supersymmetric Yang-Mills Theory
Gliozzi,Scherk,Olive’77
Field content:
Action:
Global symmetry: PSU(2,2|4)
Spectrum
Basis of primary operators:
Spectrum = {Δn}
Dilatation operator (mixing matrix):
Local operators and spin chains
related by SU(2) R-symmetry subgroup
a
b
a
b
Tree level: Δ=L
(huge degeneracy)
One loop:
Minahan,Z.’02
Bethe ansatz
Bethe’31
Zero momentum (trace cyclicity) condition:
Anomalous dimensions:
Higher loops
Requirments of integrability and BMN scaling
uniquely define perturbative scheme to construct
dilatation operator through order λL-1:
Beisert,Kristjansen,Staudacher’03
The perturbative Hamiltonian turns out to coincide
with strong-coupling expansion of Hubbard model
at half-filling:
Rej,Serban,Staudacher’05
Asymptotic Bethe ansatz
Beisert,Dippel,Staudacher’04
In Hubbard model, these equations are approximate
with O(e-f(λ)L) corrections at L→∞
Anti-ferromagnetic state
Rej,Serban,Staudacher’05; Z.’05;
Feverati,Fiorovanti,Grinza,Rossi’06; Beccaria,DelDebbio’06
Weak coupling:
Strong coupling:
Q: Is it exact at all λ?
Arbitrary operators
Bookkeeping:
“letters”:
“words”:
“sentences”:
Spin chain:
infinite-dimensional
representation of
PSU(2,2|4)
• Length fluctuations:
operators (states of the spin chain) of different length mix
• Hamiltonian is a part of non-abelian symmetry group:
conformal group SO(4,2)~SU(2,2) is part of PSU(2,2|4)
so(4,2):
Mμν - rotations
Pμ - translations
Kμ - special conformal transformations
D
- dilatation
Ground state tr ZZZZ… breaks PSU(2,2|4) → P(SU(2|2)xSU(2|2))
Bootstrap: SU(2|2)xSU(2|2) invariant S-matrix
Beisert’05
spectrum of an infinite spin chain
asymptotic Bethe ansatz
Beisert,Staudacher’05
STRINGS
String theory in AdS5S5
Metsaev,Tseytlin’98
+ constant RR 4-form flux
• Finite 2d field theory (¯-function=0)
• Sigma-model coupling constant:
• Classically integrable
Bena,Polchinski,Roiban’03
Classical limit
is
AdS sigma-models as supercoset
S5 = SU(4)/SO(5)
AdS5 = SU(2,2)/SO(4,1)
AdS superspace:
Super(AdS5xS5) = PSU(2,2|4)/SO(5)xSO(4,1)
Z4 grading:
Coset representative: g(σ)
Currents: j = g-1dg = j0 + j1 + j2 + j3
Action:
Metsaev,Tseytlin’98
In flat space:
Green,Schwarz’84
no kinetic term for fermions!
Degrees of freedom
Bosons:
15 (dim. of SU(2,2)) + 15 (dim. of SU(4))
- 10 (dim. of SO(4,1)) - 10 (dim. of SO(5))
= 10 (5 in AdS5 + 5 in S5)
- 2 (reparameterizations)
= 8
Fermions:
- bifundamentals of su(2,2) x su(4)
4x4x2
= 32
real components
:
2
kappa-symmetry
:
2
(eqs. of motion are first order)
= 8
Quantization
• fix light-cone gauge and quantize:
Berenstein,Maldacena,Nastase’02
Callan,Lee,McLoughlin,Schwarz,
Swanson,Wu’03
Frolov,Plefka,Zamaklar’06
action is VERY complicated
perturbation theory for the spectrum, S-matrix,…
Callan,Lee,McLoughlin,Schwarz,Swanson,Wu’03; Klose,McLoughlin,Roiban,Z.’in progress
• study classical equations of motion (gauge unfixed),
then guess
Kazakov,Marshakov,Minahan,Z.’04; Beisert,Kazakov,Sakai,Z.’05;
Arutyunov,Frolov,Staudacher’04; Beisert,Staudacher’05
• quantize near classical string solutions
Frolov,Tseytlin’03-04; Schäfer-Nameki,Zamaklar,Z.’05;
Beisert,Tseytlin’05; Hernandez,Lopez’06
Consistent truncation
String on S3 x R1:
Gauge condition:
Equations of motion:
Zero-curvature representation:
equivalent
Zakharov,Mikhaikov’78
Classical string Bethe equation
Kazakov,Marshakov,Minahan,Z.’04
Normalization:
Momentum condition:
Anomalous dimension:
Quantum string Bethe equations
Arutyunov,Frolov,Staudacher’04
extra phase
Beisert,Staudacher’05
Arutyunov,Frolov,Staudacher’04
Hernandez,Lopez’06
• Algebraic structure is fixed by symmetries Beisert’05
• The Bethe equations are asymptotic: they describe
infinitely long strings / spin chains and do not capture
finite-size effects. Schäfer-Nameki,Zamaklar,Z.’06
Open problems
• Interpolation from weak to strong coupling in the
dressing phase
• How accurate is the asymptotic BA? (Probably up to
e-f(λ)L)
• Eventually want to know closed string/periodic chain
spectrum
need to understand finite-size effects
Teschner’s talk
• Algebraic structure:
Algebraic Bethe ansatz?
Yangian symmetries?
Baxter equation?