Transcript Document
http://www.2x2abc.com/forum/users/2010/B12.pdf v1 Движение навстречу v = v1 + v2 v2 t А B S Движение в противоположных направлениях v2 А v1 v = v1 + v2 B Движение вдогонку v = v2 – v1 v2 v1 Движение с отставанием v = v2 – v1 v1 v2 1. Из двух городов, расстояние между которыми равно 560 км, навстречу друг другу одновременно выехали два автомобиля. Через сколько часов автомобили встретятся, если их скорости равны 65 км/ч и 75 км/ч? Удобно отразить ситуацию на схеме. Движение навстречу друг другу. 65 км/ч ? А 75 км/ч B 560 км 1). 65 + 75 = 140(км/ч) скорость навстречу друг другу. 2). 560 : 140 = 4 Ответ: 4 2. Два пешехода отправляются одновременно в одном направлении из одного и того же места на прогулку по аллее парка. Скорость первого на 1,5 км/ч больше скорости второго. Через сколько минут расстояние между пешеходами станет равным 300 метрам? х (х+1,5) км/ч км/ч 300 м 1) Найдем скорость с отставанием: (х+1,5) – х = 1,5 Можно было догадаться без введения переменной х, что если скорость первого на 1,5 км/ч больше скорости второго – это означает, что первый удаляется каждый час на 1,5 км. Это скорость, с которой второй пешеход отстает от первого. Узнаем, за какое время он удалится на 300 м (0,3 км) 2) 0,3 : 1,5 = 0,2 (ч) Осталось перевести 0, 2 ч в минуты 0,2 * 60 = 12 мин. Ответ: 12 3. Из городов A и B, расстояние между которыми равно 330 км, навстречу друг другу одновременно выехали два автомобиля и встретились через 3 часа на расстоянии 180 км от города B. Найдите скорость автомобиля, выехавшего из города A. Ответ дайте в км/ч. Удобно отразить ситуацию на схеме. Движение навстречу друг другу. 3ч 180 км А B 330 км км проехал до места встречи автомобиль из г.А 1) 330 – 180 = 150 (км) 2) 150 : 3 = 50 (км/ч) скорость автомобиля выехавшего из г.А Ответ: 50 4. Расстояние между городами A и B равно 435 км. Из города A в город B со скоростью 60 км/ч выехал первый автомобиль, а через час после этого навстречу ему из города B выехал со скоростью 65 км/ч показать на схемеоттот второй автомобиль.Удобно На каком расстоянии города A автомобили момент, когда машина из А уже встретятся? Ответ дайте в километрах. проехала 1 ч. 60 км/ч 1ч 3ч 65 км/ч ? км А 60 км B 435 км км расстояние между автомобилями через 1ч. 1) 435 – 60 = 375 (км) 2) 60 + 65 = 125 (км/ч) скорость навстречу друг другу 3) 375 : 125 = 3 (ч) время встречи 4) 60 * 3 = 180 (км) за 3 ч проехал автомобиль из г.А 5) 60 + 180 = 240 (км) расстояние от А до места встречи Ответ: 240 5. Расстояние между городами A и B равно 470 км. Из города A в город B выехал первый автомобиль, а через 3 часа после этого навстречу ему из города B выехал со скоростью 60 км/ч второй Удобно показать наесли схемеавтомобили тот автомобиль. Найдите скорость первого автомобиля, момент, машина из А вуже встретились на расстоянии 350 км от городакогда A. Ответ дайте км/ч. проехала 3 ч. ? А 60 км/ч 3ч B 350 км 470 км км расстояние, которое проехал до встречи 2-й 1) 470 – 350 = 120 (км) автомобиль. 2) 120 : 60 = 2 (ч) время, которое проехал до встречи 2-й автомобиль. 3) 350 : (3+2) = 70 (км/ч) скорость 1 автомобиля, который выехал из А и проехал до встречи 350 км, затратив 5ч. Ответ: 70 6. Расстояние между городами A и B равно 150 км. Из города A в город B выехал автомобиль, а через 30 минут следом за ним со скоростью 90 км/ч выехал мотоциклист, догнал автомобиль в городе C и повернул обратно. Когда он вернулся в A, автомобиль прибыл в B. Найдите расстояние от A до C. Ответ дайте в километрах. 90 км/ч х км/ч А 30 мин В 150 км С 6. Расстояние между городами A и B равно 150 км. Из города A в город B выехал автомобиль, а через 30 минут следом за ним со скоростью 90 км/ч выехал мотоциклист, догнал автомобиль в городе C и повернул обратно. Когда он вернулся в A, автомобиль прибыл в B. Найдите расстояние от A до C. Составим математическую модель 1й Ответ дайте в километрах. ситуации, когда произошла встреча в v, км/ч S, км t, ч Автомобиль Мотоциклист х у 90 у г. С. Расстояние оба объекта прошли равное, но автомобиль был в пути на 30 мин больше. у х у 90 1 2 у у 1 х – 90 = 2 90 км/ч х км/ч А 30 мин В У км С 150 км 6. Расстояние между городами A и B равно 150 км. Из города A в город B выехал автомобиль, а через 30 минут следом за ним со скоростью 90 км/ч выехал мотоциклист, догнал автомобиль в городе C и повернул обратно. Когда он вернулся в A, автомобиль прибыл в B. Найдите расстояние от A до C. Составим математическую модель 2й Ответ дайте в километрах. ситуации, когда автомобиль прибыл в v, км/ч S, км t, ч Автомобиль Мотоциклист х 90 150–у у 150-у х у 90 г. В, а мотоциклист в г. А. Расстояние они прошли разное, но время на эту дорогу затрачено равное. у 150-у х = 90 у у 1 х – 90 = 2 = 90 км/ч х км/ч А У км С 150 км 150 – У Ответ: 90 В 7. Первый велосипедист выехал из поселка по шоссе со скоростью Отметим на схеме примерное место 15 км/ч. Через час после него со скоростью встречи 10 2го икм/ч 3го из того же поселка в том же направлении выехал второй а встречи еще через И велосипедист, примерное место 1го ичас 3го показать на схеме тот после этого — третий. Найдите скоростьУдобно третьего велосипедиста, 1 + t 2 3когда 1-й вел. былэтого в пути если сначала он догнал второго, а черезмомент, 2 часа 20 минут после уже 2 ч, а 2-й вел. один час. догнал первого. Ответ дайте в км/ч. t x ч1 135 км/ч 2 1 t t + 2 13 10 км 30 км v, вдогонку 3й и 2й х – 10 3й и 1й х – 15 t, t ч t + 2 13 S, км (х – 10) t ( x 10)t 10 1 ( x 15) t 2 30 3 = 10 (х – 15)(t + 2 1) = 30 3 С системой придется потрудиться. При выборе ответа учтем, что скорость 3-го велосипедиста должна быть больше 15. Ответ: 25. 8. Из городов A и B навстречу друг другу выехали мотоциклист и Если в задаче дано велосипедист. Мотоциклист приехал в Bнена 3 часа раньше, чем оченьони удобно считать велосипедист приехал в A,расстояние, а встретились через 48 минут после весь путь, как 1 целая часть. выезда. Сколько часов затратил на путь из B в A велосипедист? на весь путь t, ч S, часть v, часть/ч Велосипедист х 1 Мотоциклист у 1 v навстречу 1 х часть/ч 1 1 х + у t встречи 48 60 1 х 1 у x–у=3 1 4 1 =1 х + у 5 S 1 4 ч 5 1 часть 1 у часть/ч Ответ: 4 ч