位移与应变

Download Report

Transcript 位移与应变

Theory of Elasticity
弹性力学
Chapter 4
Displacements and Strains
(位移与应变)
动力学院 闫晓军
Content(内容)
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Introduction(概述)
Mathematical Preliminaries (数学基础)
Stress and Equilibrium(应力与平衡)
Displacements and Strains (位移与应变)
Material Behavior- Linear Elastic Solids(弹性应力应变关系)
Formulation and Solution Strategies(弹性力学问题求解)
Two-Dimensional Formulation (平面问题基本理论)
Two-Dimensional Solution (平面问题的直角坐标求解)
Two-Dimensional Solution (平面问题的极坐标求解)
Three-Dimensional Problems(三维空间问题)
Bending of Thin Plates (薄板弯曲)
Plastic deformation – Introduction(塑性力学基础)
Introduction to Finite Element Mechod(有限元方法介绍)
Chapter 4
Page 1
Review (复习)
  lim
S 0
 ij
p
S
Stress Vector
stress tensor
(矢量)
(张量)
  Px i  Py j  Pz k
Chapter 4
Page 2
 xx
 xy
 xz
 yx
 yy
 yz
 zx
 zy
 zz
Chapter 4
(第四章)
4.1 General Deformations(变形)
4.2 Geometric Construction of Small
Deformation Theory(小变形下的几何方程)
4.3 Principal Strains(主应变)
4.4 Strain Compatibility(应变相容)
4.5 Curvilinear Cylindrical(圆柱坐标系)
Vocabularies (常用词汇)
homework(作业)
Chapter 4
Page 3
4.1 General Deformations (变形)
The displacement of the point is the function of x, y, z
位移是位置的函数
u  u ( x, y, z )
v  v( x, y, z )
w  w( x, y, z )
Chapter 4
Page 4
4.1 General Deformations (变形)
UA=?
A
the rigid-body motion
of the airplane飞机刚体位移
+
the rotation of the wing
机翼刚体转动
+
strain deformation
应变位移 <变形>
Chapter 4
Page 5
4.1 General Deformations (变形)
=
Displacement(位移)
+
rigid-body motion(刚体位移)
the distance between
points remains the same.
rotation(刚体转动)
+
相对位移不发生变化
Strain deformation(应变位移)
<变形>
Chapter 4
Page 6
4.1 General Deformations (变形)
Deformation(变形)
An elastic solid is said to be deformed or strained when
the relative displacements between points in the body
are changed.
弹性体内部点之间的相对位移发生改变。
*刚体位移和大变形不是
弹性力学的研究范畴
Chapter 4
Page 7
4.1 General Deformations (变形)
Quantify deformation(定量描述变形)
Displacement of Po and P : uo ,u
u
u u 
o
vv 
o
x
v
x
w w 
o
Chapter 4
Page 8
rx 
rx 
w
x
u
y
v
y
rx 
ry 
ry 
w
y
u
z
v
z
ry 
rz
rz
w
z
rz
4.1 General Deformations (变形)
o

r  r  r  u  u
u
u u 
o
 rx 
 ry 
 rz 
u
x
v
x
w
x
rx 
rx 
rx 
Chapter 4
u
y
v
y
w
y
ry 
ry 
ry 
u
rz
z
v
z
vv 
o
rz
z
v
x
w w 
o
w
x
rz
Page 9
rx 
rx 
w
x
u
y
v
y
rx 
ry 
ry 
w
y
u
z
v
z
ry 
r  ui, j rj
rz
rz
w
z
rz
4.1 General Deformations (变形)
u i , j   ij  w ij
r  ui, j rj
u
u u 
o
vv 
o
x
v
x
w w 
o
rx 
rx 
w
x
u
y
v
y
rx 
ry 
ry 
w
y
u
z
v
z
ry 
rz
rz
w
z
rz
 ij 
1
w ij 
1
2
2
ui, j
 u
 x

 v
 x
 w

 x
Chapter 4
Page 10
y
v
x
w
x
( u i , j  u j ,i )
( u i , j  u j ,i )
ui  ui   ij dx j  wij dx j
o
u
u 
z 

v 
x 
w 

x 
4.1 General Deformations (变形)
u i  u i   ij dx j  w ij dx j
o
位移
Chapter 4
刚体
位移
应变
位移
Page 11
刚体
转动
4.2 Geometric Construction of Small
Deformation Theory(几何方程)
Two-dimensional deformation 二维变形
Undeformed
(未变形)
Horizontal Extension
(水平伸长/压缩)
Chapter 4
Rigid body rotation(刚体转动)
Vertical Extension Shearing deformatio
(垂直伸长/压缩)(剪切变形)
Page 12
4.2 Geometric Construction of Small
Deformation Theory(几何方程)
x线/正应变
x 
A B   A B
AB
A B  dx
x 
AB 
u
2
2
2
u
y 
x
2
v
y
u  u 
u 


 v

 v 

dx

dx

dx

1

2


dx

1










 dx
x
x  x 
x 


 x

 x 

Chapter 4
Page 13
4.2 Geometric Construction of Small
Deformation Theory(几何方程)
Engineering shear strain(工程剪切应变)
 xy 

  C A  B     
2
  tan
 tan 
 tantan
  tan 
v
x
 xy 
dx 
Chapter 4
Page 14
u
dx
u
x

dx
y
dy 
dy
v
y

dy
u
y

v
x
4.2 Geometric Construction of Small
Deformation Theory(几何方程)
strain-displacement relations.(几何方程
柯西方程)
x 
 xy 
u
x
u
y
, y 

Chapter 4
v
x
v
y
, z 
,  yz 
v
z
w
z

Page 15
A. L. Cauchy柯西
w
y
,  zx 
w
x

u
z
4.2 Geometric Construction of Small
Deformation Theory(几何方程)
strain tensorεij (几何方程,应变张量)
x

  yx
  zx

 xy
y
 zy
 xz 

 yz 
 z 
x 
 ij 
1
2
u
i, j
 u j ,i 
Chapter
 xy
u
x
, y 
v
y

 x
1
  yx
2
1

 2 zx
, z 
w
1
2
 xy
y
1
2
 zy

 xz 
2

1
 yz 
2

z 

1
z
1  u v 
1  v w 
1  w u 
 
  ,  yz   

 ,  zx  

2  y x 
2  z y 
2  x z 
Page 16
4.3 Principal Strains(主应变)
2
1
3
x

  yx
  zx

 xy
y
 zy

 xz 

 yz 
 z 
det  ij   n  ij

3
0
 n  I 1 n  I 2  n  I 3  0
3
Chapter 4
Page 17
2
4.3 Principal Strains(主应变) 
2
1
 n  I 1 n  I 2  n  I 3  0
3
3
2
Invariants of the strain tensor(应变张量的不变量)
I 1   x   y   z
I 2   x  y   y  z   z  x  (  xy   yz   zx )
2
2
2
x
 xy
 xz
I 3   yx
y
 yz   x  y  z  2  xy  yz  zx  (  x  yz   y  xz   z  xy )
 zx
 zy
z
Chapter 4
2
Page 18
2
2
4.3 Principal Strains (主应变)
Octahedral Strains(八面体应变)
Normal Strain(八面体正应变)
 oct 
1
3
( 1   2   3 )
Normal Strain(八面体剪应变)
 oct 
8 
2
3
2
3
(
  2 )  ( 2   3 )  ( 3   1 )
2
1
2
2

1
[( x   y )  ( y   z )  ( z   x )  6( xy   yz   xz )] 2
Chapter 4
2
2
Page 19
2
2
2
2
4.3 Principal Strains (主应变)
Strain Deviator Tensor(偏应变张量)
 ij  e ij 
1
3
 kk 
 ex

e ij  e yx

 e zx
1
3
1
3
 kk  ij
(  x   y   z ) Mean strain(平均应变)hydrostatic
e xy
ey
ez y
Chapter 4
 2 x   y   z

3
e xz  

e yz  
 yx
 
e z  
 xz


Page 20
 xy
2 y   z   x
3
 zy

 xz



 yz

2 z   x   y 

3

4.3 Principal Strains (主应变)
The invariants of Strain Deviator Tensor
(偏应变张量的不变量)
J 1  e x  e y  e z  0
J 2 
1
2
2
2
2
2
2
2
( e x  e y  e z  2 e xy  2 e yz  2 e zx )
J 3  e ij
J 1  0
 oct  2
J 2  e1 e 2  e 2 e 3  e 3 e1
J 3  e1 e 2 e 3
Chapter 4
Page 21
2
3
J 2
4.4 Strain Compatibility(应变相容方程)
x 
U, V
u
x
, y 
v
y
,  xy 
u
y

v
x
?
continuous, single-valued
displacements
连续,单值,位移
continuous, single-valued
Strain
连续,单值,应变
Compatibility equations(相容方程)
Chapter 4
Page 22
4.4 Strain Compatibility(应变相容方程)
Geometric interpretation (几何意义)
Chapter 4
Page 23
4.4 Strain Compatibility(应变相容方程)
Saint Venant compatibility equations.
(相容方程)
x 
 x
u
x
2
y
2
, y 
2

v
x
3
3
 u v 
 u
 v

 



2
2
xy
yx  y x 
xy
yx
 x
y
2

2
 y
2
2
Chapter 4
y
2
 u
xy
y
,  xy 
u
  xy
3

v

x
2
Page 24
  xy
2

xy
4.4 Strain Compatibility(应变相容方程)
3-D compatibility equations(三维相容方程)
 x
y
2
 y

2
z
2
 z
z
 x

 z
2
y
2
 x


z
2
xy
  yz
2
2
2
2
yz
x
2
  xy
2
2
2
2
 y
2
2
yz
  zx
2
2
zx
    yz   zx   xy 




x 
x
y
z 
 y
    zx   xy   yz 





zx y 
y
z
x 
2
    xy   yz   zx 





xy
z 
z
x
y 
Page
Relations are the necessary
and sufficient conditions for
continuous, single-valued
displacements in simply
connected regions.
(相容方程保证了在单连通
域上位移单值、连续)。
单连通域?
 z
2
Chapter 4
25
4.4 Strain Compatibility(应变相容方程)
Simply connected and multiply connected.
(单连通域和多连通域)
二维多连通域
二维单连通域
Chapter 4
Page 26
4.4 Strain Compatibility(应变相容方程)
(c)三维单连通域(d)三维单连通域(e)三维多连通域
Chapter 4
Page 27
4.5 Curvilinear Cylindrical(圆柱坐标系)
strain-displacement relations in curvilinear cylindrical
coordinates(柱坐标下的几何方程)
 u 
u z
1
,   ur 
r 
 , z 
z
 
r
r
u r
 r
1  1  u r  u u 


 

r 
r
2  r 
 z
1 u z 
1   u

 

r  
2  z
 zr
1  ur u z 

 

r 
2  z
Chapter 4
Page 28
Vocabularies (常用词汇)
strain tensor
principal strain
octahedral strains
strain deviator tensor
compatibility equations
simple connected domain
multiply connected domain
rigid body displacement
shear strain
Chapter 4
Page 29
应变张量
主应变
八面体应变
偏应变张量
相容方程
单连通域
多连通域
刚体位移
剪应变
Homework
3-3
3-4
Chapter 4
Page 30