Ca, Mg and S in Soil

Download Report

Transcript Ca, Mg and S in Soil

Form , Source and function in Plant
Element
Calcium
Magnesium
Sulfur
Nutrient Form
++
Ca
++
Mg
-SO4
1. Essential Nutrietns of Plants
Element
Chemical
symbol
Mccronutrients
Nitrogen
N
Phosphorus
P
Potassium
K
Magnesium
Mg
Sulfur
S
Calcium
Ca
Micronutrients
Iron
Fe
Manganese
Mn
Zinc
Zn
Copper
Cu
Boron
B
Molybdenum
Mo
Chlorine
Cl
Essential But Not Applied
Carbon
C
Hydrogen
H
Oxygen
O
Atomic
weight
Ionic forms
Absorbed by plants ____
14.01
30.98
39.10
24.32
32.07
40.08
NO3-, NH4+
PO43-, HPO42-, H2PO4K+
Mg2+
SO42Ca2+
55.85
54.94
65.38
63.54
10.82
95.95
35.46
Fe2+, Fe3+
Mn2+
Zn2+
Cu2+
BO32-, B4O72MoO42Cl-
12.01
1.01
16.00
CO2
H2O
O2, H2O
Approximate dry
concentration_____
4.0 %
0.5 %
4.0 %
0.5 %
0.5 %
1.0 %
200 ppm
200 ppm
30 ppm
10 ppm
60 ppm
2 ppm
3000 ppm
40 %
6%
40 %
________________________________________________________________
Plant tissues also contain other elements (Na, Se, Co, Si, Rb, Sr, F, I) which are not needed for the
normal growth and development.
MACRONUTRIENTS – SECONDARY
Approx.
Conc. in
Plants
Element
Main Function
Primary Source
Calcium (Ca)
Structural component
of cell walls; cell
elongation; affects cell
permeability
Soil minerals,
limestone
0.1-3%
Magnesium
(Mg)
Component of
chlorophyll; enzyme
activator; cell division
Soil minerals,
dolomitic limestone
0.05-1%
Sulfur
(S)
Constituent of proteins;
involved in respiration
and nodule formation
Soil organic matter,
rainwater
0.05-1.5%
Form , Source and function in Plant
KALSIUM
(Ca)
Penyusun lamela tengah dinding sel.
Kofaktor bbrp ensim dlm hidrolisis ATP &
fosfolipida.
Berperan sbg messenger ke 2 dlm pengaturan
metabolisme.
1) Soil Relations
- Present in large quantities in earth’s surface (~1% in US top soils)
- Influences availability of other ions from soil
2) Plant Functions
- Component of cell wall
- Involved in cell membrane function
- Largely present as calcium pectate in meddle lamela
Calcium pectate is immobile in plant tissues
3) Deficiency and Toxicity
- Deficiency symptoms in young leaves and new shoots (Ca is immobile)
Stunted growth, leaf distortion, necrotic spots, shoot tip death
Blossom-end rot in tomato
- No Ca toxicity symptoms have been observed
4) Fertilizers
- Agricultural meal (finely ground CaCO3·MgCO3)
- Lime (CaCO3), Gypsum (CaSO4)
- Superphosphate
- Bone meal-organic P source
Calcium (Ca)
– Plant available form: Ca+2
– Plant immobile, very limited soil mobility
– Functions: Cell membrane integrity, co-enzyme
– Excess:
• Mg uptake interference
– Deficiency:
• Inhibited bud growth, root tip death, mature leaf cupping,
weak growth, blossom end rot and pits on fruits
– Notes:
• Usually corrected with pH, Water stress affects Ca
relationships.
Calcium
• Is mobile in the soil
– Moves to root by mass flow
– Can be leached – particularly sandy soils
– Deficiency sometimes seen in dry soils
when there isn’t enough water to transport
Ca
• Is held on the cation exchange
• Low pH soils likely to be low in Ca
Factors Affecting Ca Availability
• Total Ca supply & % Ca saturation of CEC
– Low CEC soil with 1000 ppm Ca supply more Ca to
plants than high CEC soil with 2000 ppm Ca
• Soil pH
– Low soil pH impedes Ca uptake
• Type of soil clay
– 2:1 clays require > Ca saturation of CEC compared to
1:1 clays to supply adequate Ca
• Ratio of solution Ca2+ to other cations
– Uptake depressed by NH4+, K+, Mg+, Mn2+, Al2+
– Absorption increased by NO3-
• Calcium Deficiency — Tip leaves small,
rolled and scorched
Growth fairly good;
young leaves chlorotic,
forward roll and marginal
scorch.
This plant failed to form tubers
of appreciable size.
Potato Plant in Sand Culture
Blossom End Rot of Tomato
Calcium Deficiency
Right-Hydroponic tomatoes grown in the greenhouse, Left-Blossom end
rot of tomato fruits induced by calcium (Ca++) deficiency
Influence of Calcium on Root Induction
on Rose Cuttings
Form , Source and function in Plant
FUNGSI HARA MAGNESIUM
MAGNESIUM (Mg)
Dibutuhkan oleh beberapa ensim yg
terlibat dlm pemindahan fosfat.
Penyusun molekul klorofil.
Magnesium (Mg)
1) Soil Relations
- Present in soil as an exchangeable cation (Mg2+)
- Similar to Ca2+ as a cation
2) Plant Functions
- Core component of chlorophyll molecule
- Catalyst for certain enzyme activity
3) Deficiency and Toxicity
- Deficiency: Interveinal chlorosis on mature leaves
(Mg is highly mobile)
- Excess:
Causes deficiency symptoms of Ca, K
4) Fertilizers
- Dolomite (mixture of CaCO3·MgCO3)
- Epsom salt (MgSO4)
- Magnesium nitrate [Mg(NO3)2]
- Magnesium sulfate (MgSO4)
Magnesium (Mg)
– Plant available form: Mg+2
– Plant mobile, limited soil mobility
– Functions:
• Chlorophyll compound, co-enzyme, seed germination
– Excess:
• Ca uptake interference
– Deficiency:
• Growth Reduction, marginal chlorosis, interveinal
chlorosis in mid and lower leaves, reduced seed
production, cupped leaves
– Notes:
• leaches with irrigation, usually corrected with Lime in
fields, chelates and sulfates in pots
Magnesium
• Moves to root via mass flow & diffusion
– Leaches somewhat more than Ca
• Held on the cation exchange
• Deficiency occurs in low pH soils
Factors Affecting Mg Availability
• Total Mg supply
• CEC
• pH
• Excess K applications on sandy soil
– Cause Mg leaching
– K interferes with Mg uptake
• Continuous use of high Ca lime increases Ca:Mg ratio
– May induce Mg deficiency in certain crops
• NH4+ induced Mg deficiency
– High rates of NH4+ on soils with low exchangeable Mg
Magnesium (Mg) Deficiency on Poinsettia
Interveinal Chlorosis on Mature Leaves
• Magnesium Deficiency
Chlorosis and necrosis of leaves
defoliation
Growth fairly good
foliage chlorotic and with intervenal necrosis
death of older foliage
• Magnesium Deficiency
Purple tinting
intervenal necrosis developing
from marginal areas.
Apple Leaves
Calcium & Magnesium Cycle
From Havlin et al., 2005
Form , Source and function in Plant
FUNGSI HARA BELERANG
BELERANG (S)
Penyusun asam amino sistein, sistin, metionin &
protein. Penyusun asam lipoat, koensim A, tiamin,
pirofosfat, glutation, biotin, adenosine-5’fosfosulfat & 3-fosfoadenosin.
Sulfur (S)
1) Soil Relations
- Present in mineral pyrite (FeS2, fool’s gold), sulfides (S-mineral complex),
sulfates (involving SO4-2)
- Mostly contained in organic matter
- Acid rain provides sulfur
2) Plant Functions
- Component of amino acids (methionine, cysteine)
- Constituent of coenzymes and vitamins
- Responsible for pungency and flavbor (onion, garlic, mustard)
3) Deficiency and Toxicity
- Deficiency:
light green or yellowing on new growth (S is immobile)
- Toxicity: not commonly seen
4) Fertilizers
- Gypsum (CaSO4)
- Magnesium sulfate (MgSO4)
- Ammonium sulfate [(NH4)2SO4]
- Elemental sulfur (S)
Sulfur (S)
– Plant available form: SO4– Plant immobile, very soil mobile
– Functions:
• structural compound of AA’s, etc. and chlorophyll
production
– Excess: very limited information
– Deficiency:
• Rarely deficient due to pollution and impurities: symptoms
include growth reduction, overall chlorosis
– Notes:
• leaches with irrigation, usually corrected with other
nutrients, true toxicity is rare and difficult to control, very
high levels in low pH soils
Sulfur Forms in Soils
• Inorganic S
– Sulfate dominates (SO42-)
– Sulfides (flooded conditions)
– Elemental S
– Thiosulfates
– Range in oxidation states (-2 to +6)
• > 90% of total S in most soils is organic
– Carbon-bonded S
– Ester sulfates (organic sulfates)
• 30 to 75% of organic S
Carbon-bonded S
Volatile S
CS2
CH3SH
CH3SCH3
Volatilization
Sulfur Mineralization
• Biological
– Cleavage of C-S bonds to produce S2– Cysteine desulfhydolase
– Driven by need for C
• Biochemical
– Cleavage of C-O-S (ester) bonds to produce SO42– Sulfohydrolases (sulfatases), associated with microbial cell
walls
– Driven by need for S, regulated by SO42• C:S ratio
– C: S < 200, net S mineralization; > 400 immobilization
• Volatilization
– Anaerobic mineralization
Immobilization of S
(assimilation)Serine
PAP + Tr(ox) SO32-
ATP
SO42-
SO42-
PPi
S2-
Cysteine
3NADPH 3NADP
APS
ATP
Tr(red)
PAPS
COS
Cysteine
ADP
GSH APS
Pi
O-acetyl-serine Acetate + H2O
AMP + H+
GSSO3-
GSSH
6Fd(red) +7H+ 6Fd(ox) +3H2O
Cysteine
GS
Microbial
S
Oxidation
S2O322e-
S2-
4e-
S0
2e-
SO32-
SO42-
AMP
ADP
2e-
APS
Chemoautotrophic (Lithotrophic)
• Energy generated (-189.9 kcal mol-1 S22-; -139.8 kcal mol-1 S0)
• Acidifying (2H+ per S0)
• Generally aerobic; attached to S granules
Photoautotrophic (Lithotrophic)
Chemoheterotrophic (Organotrophic)
• No energy produced; dominant in neutral to alkaline soils
• Many bacteria (Arthrobacter, Bacillus, Pseudomonas)
• Many fungi (Aspergillus, Mucor, Trichoderma)
Pi
Sulfur Deficiency in Corn.
Overall light green color, worse
on new leaves during rapid
growth.
AVAILABILITY OF NUTRIENTS
INFLUENCES GROWTH AND
PRODUCTIVITY
MATURNUWUN
Form , Source and function in Plant
Chemical Atomic
Ionic forms
Element
symbol
weight
Absorbed by plants
concentration_____
Approximate dry
____
Mccronutrients
Nitrogen
Phosphorus
Potassium
Magnesium
Sulfur
Calcium
N
P
K
Mg
S
Ca
14.01
30.98
39.10
24.32
32.07
40.08
NO3-, NH4+
PO43-, HPO42-, H2PO4K+
Mg2+
SO42Ca2+
Micronutrients
Iron
Manganese
Zinc
Copper
Boron
Molybdenum
Chlorine
Fe
Mn
Zn
Cu
B
Mo
Cl
55.85
54.94
65.38
63.54
10.82
95.95
35.46
Fe2+, Fe3+
Mn2+
Zn2+
Cu2+
BO32-, B4O72MoO42Cl-
Essential But Not Applied
Carbon
C
12.01
Hydrogen
H
1.01
Oxygen
O
16.00
CO2
H2O
O2 , H 2 O
4.0 %
0.5 %
4.0 %
0.5 %
0.5 %
1.0 %
200 ppm
200 ppm
30 ppm
10 ppm
60 ppm
2 ppm
3000 ppm
40 %
6%
40 %
________________________________________________________________
Plant tissues also contain other elements (Na, Se, Co, Si, Rb, Sr, F, I) which are not needed for the
normal growth and development.
SOIL pH AND MINERAL NUTRITION
Different types of plants have different soil pH requirements (truffle link)
UNSUR MIKRO
Menjadi perhatian sebab :
1. Diangkut Tanaman
2. Penggunaan varietas unggul & pupuk makro
3. Penggunaan pupuk makro analisis tinggi
4. Kemampuan mengenal gejala kekahatan unsur
Keadaan unsur mikro dapat membatasi pertumbuhan tanaman :
1. Tanah Pasir
2. Tanah organik/Gambut
3. Tanah ber-pH tinggi
4. Tanah yang terus menerus ditanami dan dipupuk berat
Besi (Fe)
• Di kerak bumi + 5 %
Fe dalam tanah + 3,8 %
Mineral mengandung Fe : olivin, pirit, siderit,
hematit, geotit, magnetit, limonit
Kahat Fe :- Tanah pasiran
- Tanah organik
Larutan Fe tanah - diserap sebagai Fe+2
- dapat ditransportasi ke akar sebagai kelat
- diserap secara mass flow & difusi
- tidak mobil dalam tanaman
Faktor-faktor yang mempengaruhi ketersediaan Fe
1. Keseimbangan ion
Pengaruh keseimbangan ion-ion Cu, Fe & Mn
Rasio Fe / (Cu + Mn) rendah  kahat Fe
2. pH
Kahat Fe  pada daerah pH tinggi ( pada tanah calcareus)
• tanah masam dengan total Fe
• Kelarutan Fe minimum pada pH 7,4 – 8,5
3. Daerah dingin, curah hujan tinggi, kelembaban tinggi, aerasi
kurang  kahat Fe
4. Penambahan b.o. Mengatasi kekurangan Fe
5. Hubungan dengan unsur lain
• Nutrisi N mempengaruhi klorosis Fe
• Kahat Fe atau Zn menggaggu pergerakan Fe dalam tanaman
:
Peran dan Defisiensi Fe
• Peran Fe :
 Mengaktifkan sistem enzim-enzim (fumarie, hidrogenase,
katalase, oksidase & sitokrom)
 Sintesa protein kloroplas
• Defisiensi Fe ;
 Nampak pada daun muda
 Klorosis di antara tulang daun muda  menyebar ke helai daun
 daun putih
Mangan (Mn)
Mangan (Mn)
Di kerak bumi + 1.000 ppm
Dalam tanah 20 – 3.000 ppm (rata-rata 600 ppm)
Terkandung dalam feromagnesium, pirolusit,
hausmanit, manganit, rodokrosit, rodonit
• Daerah yang kurang Mn :
 Tanah gambut di atas calcareus
 Aluvial debuan, tanah lempungan
 Tanah calcareus drainase jelek
 Tanah pasiran dengan mineral masam
Bentuk Mn tanah
 Larutan Mn+2
 Organik – Mn
 Mn oksida
Faktor-faktor yang mempengaruhi ketersediaan Mn
:
1. Keseimbangan dengan ion logam berat lain
2. pH dan karbonat
pengapuran  Mn rendah
3. Bahan organik, Menambah Mn
4. Korelasi dengan unsur lain
Sumber N mempengaruhi ketersediaan Mn
` Penambahan
NH4Cl
(NH4)2SO4
NH4NO3
Penyerapan Mn meningkat
NH4H2PO4
CO(NH2)2
5. Musim & iklim
6. Mikroorganisme
Larutan Mn
Sebagai larutan ion
Konsentrasi berkurang dengan naiknya pH
[Mn] larutan 0,01 – 13 ppm pada tanah masam – netral
(Umumnya 0,01 – 1 ppm)
• Peranan Mn :
•  Mengaktifkan enzim-enzim
• Defisiensi Mn :
•  Klorosis di antara tulang daun
Seng (Zn)
Litosfer + 80 ppm
Tanah 10 – 300 ppm (rata-rata 50 ppm
• Daerah kurang Zn :
 Tanah berpasir masam




Tanah netral / basa
Tanah calcareus
>>> lempung & debu
>>> P tersedia
 >>> tanah organik
•
Bentuk Zn :
 Larutan Zn+2
 Zn dapat ditukarkan
 Zn diadsorbsi
 Zn organik
 Zn yang mensubstitusi Mg di kisi krist
Faktor-faktor yang mempengaruhi ketersedian Zn :
1. pH -> pH tinggi  Zn rendah
2. Adsorbsi oleh mineral oksida
3. Adsorbsi oleh mineral lempung
4. Adsorbsi oleh mineral karbonat
5. Membentuk kompleks dengan b.o.
6. Interaksi dengan unsur lain
•
P >>  kahat Zn
•
Sulfat / gipsum >>>  Mn <<<  Zn tinggi
•
N  pupuk N meningkatkan kebutuhan Zn
•
Jumlah dan sifat sumber N berhubungan dengan ketersediaan Zn
•
Pupuk N masam meningkatkan penyerapan Zn
•
netral / basa  Zn turun
7. Penggenangan  Anaerob  kahat Zn
8. Iklim yang dingin  kahat Zn
Peranan Zn :
 Aktifator enzinm-enzim
• Defisiensi Zn :
 Pada daun muda
 Klorosis di antara tulang daun
 Pertumbuhan tunas terhambat
 Pada jagung dan sorghum  pita putih sebelah,
menyebelah tulang daun
Boron (B)
Unsur hara mikro non esensial
valensi +3
Radius ion sangat kecil
[B] dalam tanah 2 – 200 ppm (rata-rata 7 – 80 ppm)
Hanya < 5 % yang tersedia bagi tanaman
•
Bentuk B dalam tanah
1. Dalam batuan dan mineral
2. Diadsorbsi di permukaan lempung dan Fe hidrous & oksida Al
3. Bergabung dengan b.o.
4. Sebagai H3BO3 dan B(OH4)- bebas dalam larutan tanah
•
B diserap dalam bentuk BO3-3
•
melalui mass flow & difusi
•
tidak mobil
Faktor-faktor yang mempengaruhi ketersediaan B :
1.
2.
3.
4.
5.
6.
Tekstur tanah
Tekstur kasar, drainase baik, tanah pasiran  B <<<
Jumlah dan tipe lempung
[B] tersedia >>> pada tanah berat dp tanah kasar
Illit, montmorilonit adsorbsi B > kaolinit
pH tanah dan pengapuran
pH tinggi  B rendah
Penyerapan B tinggi pada pH 6,3 – 6,5
Pengapuran tinggi  B rendah sebab Al(OH)3 mengadsorbsi B lebih banyak
Bahan organik
B dan b.o.  kompleks (sumber B pada tanah masam)
Pemberian b.o. Meningkatkan B tanah
Hubungan dengan unsur lain
Ca, Ca rendah B rendah demikian juga dengan Overlime  B terbatas
K, Pada tanah B sangat rendah, dengan pemberian K maka gejala kahat B menonjol
N, Pemberian N mengontrol kelebihan B dalam jeruk tanaman lain
Kelembaban tanah
Kahat B pada musim kering / kelembaban renda
h
Faktor tanaman  tiap tanaman berbeda-beda kebutuhan B
 Bit gula
 Apel, asparagus, brokoli, kubis  perlu B banyak
Peran B dalam tanaman :
 Metabolisme karbohidrat dan pergerakan gula
 Perkembangan sel
 Berperan dalam sistem enzim
Kekurangan B :
 Pada pucuk-pucuk muda
 Daun muda hijau pucat (terutama dasarnya)
 Jaringan pada pangkal daun pecah, bila tumbuh seakan terpilin
Tembaga (Cu)





Di kerak bumi 55 – 70 ppm
Batuan beku 10 – 100 ppm
Batuan sedimen 4 – 45 ppm
Dalam tanah 1 – 40 ppm (rata-rata 9 pmm)
1 – 2 pmm  kahat
Mineral yang mengandung Cu :
 Kalkoporit (CuFeS2)
 Kalkosit (Cu2S)
 Bornit (CuFeS4)
Mineral sekunder yang mengandung Cu dalam bentuk-bentuk oksida,
karbonat, silikat, sulfat, clorit
Kahat Cu : histosol
Faktor-faktor yang mempengaruhi ketersediaan Cu :
1. Tekstur
Tanah pasir podsol  Cu rendah
Tanah pasir calcareus  Cu rendah
2. pH
pH tinggi  adsorbsi koloid tinggi  Cu rendah
3. Interaksi dengan unsur hara lain
•
Aplikasi pupuk N  defisiensi Cu lebih buruk
•
Tingginya konsentrasi Al dan Zn akan menekan penyerapan Cu
oleh tanaman lain
4. Penanaman tanaman pada residu tanaman lain
5. Faktor tanaman
Bentuk Cu dalam tanah :
 Larutan ion dalam tanah
 Kisi pertukaran lempung dan ikatan dengan b.o.
 Akumulasi dalam bahan oksida tanah
 Kisi adsorbsi spesifik
 Sisa-sisa biologis & organisme hidup
Larutan Cu tanah :
Cudd
Cu adsorbsi
Cu – b.o.
Peran Cu :
 Sebagai aktivator berbagai enzim (tirosinase, laktose,
oksidase asam askorbat, polifenol oksidase)
Gejala defisiensi Cu :
 Daun menggulung
 Daun mengalami distorsi berkembang tidak normal
 Layu daun muda
Molibdenum (Mo)
 Di kerak bumi <<<
 Di tanah 0,2 – 5 ppm (rata-rata 2 ppm)
Bentuk Mo :
 Tak tertukarkan
 Anion tertukarkan
 Ikatan dengan Fe & Al oksida
 Ikatan dengan b.o.
Kahat Mo :
 Tanah berpasir
 Tanah masam
Larutan Mo :
 pH 4,2  MoO4=  diserap tanaman
Faktor-faktor yang mempengaruhi :
1. pH
2. Jumlah Al & Fe oksida
3. Korelasi denagn unsur lain
P meningkatkan absorbsi dan translokasi Mo
SO4= >>>  Mo turun
Transport Mo :
- mass flow
- difusi
Faktor tanaman : - legum sensitif terhadap Mo
- padi-padian toleran terhadap Mo <<<
Peran Mo :
 Fikasai N2  legum
 Asimilasi
 Reduksi nitrat
 Sintesa asam amino & protein
Defisiensi Mo  klorosis di antara tulang daun
Cobalt (Co)
 Co esensial dalam simbiose fiksasi N2
 Dalam hewan, Co  makanan ternak. Perlu Co untuk sintesa B12
 [Co] di kerak bumi 40 ppm
•
Granit, feromagnesian Co rendah (1 – 10 pmm)
•
Sandstone, shale Co < 5 ppm
•
Batuan sedimen 20 – 40 ppm
 [Co] dalam tanah 1 – 70 ppm (rata-rata 8 ppm)
 < 5 ppm  kahat
 Perangai Co dalam tanah :
•
Adsorbsi (muskovit > hematit > bentonit = kaolinit)
•
Kompleks dengan b.o. (membentuk kelat)
Clor (Cl)
 Sebagai anion Cl- dalam tanah, pada pH cukup masam sampai
mendekati netral
 Pada kemasaman tinggi diikat / diadsorbsi oleh kaolinit
 Cl dalam tanah sangat mobil
Perpindahan dan akumulasi Cl tergantung sirkulasi air
Cl dalam air bawah tanah dapat berpindah secara kapiler ke daerah
perakaran
Masalah :
1. Jumlah dalam air irigasi
2. Akumulasi di daerah perakaran
3. Sifat fisik tanah & drainase
4. Tingginya water table dan kapiler ke akar
Cl < 2 ppm  rendah
Crop Yield
Crop Response
Curves
Nutrient Level
TERIMAKSIH