Reactions of alkenes

Download Report

Transcript Reactions of alkenes

Alkenes and Alkynes Addition Reactions © E.V. Blackburn, 2011

Reactions of alkenes catalytic hydrogenation + H 2 Pt, Pd or Ni H C C H Heat of hydrogenation - the heat liberated during this reaction.  H is ~125 kJ/mol for each double bond in the compound.

© E.V. Blackburn, 2011

Mechanism of alkene hydrogenation H 2 H H catalyst H H complexation of alkene to catalyst H 2 adsorbed at surface H H hydrogen insertion catalyst + H H alkane © E.V. Blackburn, 2011

Mechanism of alkene hydrogenation Hydrogenation is stereospecific.

The two hydrogens add to the same side of the double bond - a syn addition.

© E.V. Blackburn, 2011

Reactions of alkenes  C  C The  electrons are less tightly held than the  electrons. The double bond therefore acts as a source of electrons - a base – a nucleophile.

It reacts with electron deficient compounds - acids electrophiles.

© E.V. Blackburn, 2011

Electrophilic addition Electron seeking reagents are called electrophilic reagents.

The typical reaction of alkenes is one of electrophilic addition - an acid - base reaction.

C C + YZ C C Y Z Don’t forget that free radicals are electron deficient. They undergo addition reactions with alkenes.

© E.V. Blackburn, 2011

Addition of hydrogen halides + HX H C C X HX = HCl, HBr, HI © E.V. Blackburn, 2011

Addition of hydrogen halides H 2 C=CH 2 + HCl CH 3 CH 2 Cl only one product is possible, chloroethane but....

CH 3 -CH=CH 2 CH 3 -CH=CH 2 H-Cl ?

CH 3 CH 2 CH 2 Cl Only 2-chloropropane is formed © E.V. Blackburn, 2011

Markovnikov’s rule H H CH 3 CH 3 HCl CH 3 H 3 C C CH 3 Cl In 1869, Markovnikov proposed that in the addition of an acid to an alkene, the hydrogen of the acid bonds to the carbon which is already bonded to the greater number of hydrogens.

© E.V. Blackburn, 2011

Markovnikov’s rule CH 3 CH 2 CH=CHCH 3 + HI CH 3 CH 2 CHICH 2 CH 3 + CH 3 CH 2 CH 2 CHICH 3 Each carbon of the double bond is bonded to one H therefore both isomers are formed.

© E.V. Blackburn, 2011

Markovnikov addition - a regioselective reaction These reactions are said to be

regioselective

because only one of the two possible directions of addition occurs.

Regioselectivity - the preferential formation of one isomer in those situations where a choice is possible.

© E.V. Blackburn, 2011

HBr - the peroxide effect 1933, Kharasch and Mayo CH 3 CH 3 -C=CH 2 HBr absence of peroxides (-O-O-) H 3 CH C C Br 3 CH 3 presence of peroxides CH 3 H 3 C C CH 2 Br H © E.V. Blackburn, 2011

Addition of sulfuric acid CH 3 CH=CH 2 cold H 2 SO 4 80% CH 3 CHCH 3 OSO 3 H H 2 O  CH 3 CHCH 3 OH © E.V. Blackburn, 2011

Hydration H H CH 3 + H 2 O CH 3 H + H H CH 3 C C H OH CH 3 a Markovnikov addition © E.V. Blackburn, 2011

1.

The mechanism of the addition C C H + + X H X 2.

C C H + + X C C H X HX = HCl, HBr, HI, H 2 SO 4 , H 3 O + © E.V. Blackburn, 2011

1.

H 3 C H An example H H H Cl H 3 C H H C C + H H + Cl 2.

H 3 C H H C C + H H + Cl H 3 C H H C C Cl H H © E.V. Blackburn, 2011

Orientation + CH 3 CHCH 3 CH 3 CH=CH 2 HCl X + CH 3 CH 2 CH 2 Cl Cl CH 3 CHCH 3 © E.V. Blackburn, 2011

Orientation CH 3 CH 3 C=CH 2 HCl CH 3 CH 3 CCH 3 + X CH 3 CH 3 CH=C CH 3 HCl X CH 3 + CH 3 CHCH 2 CH 3 CH 3 CH 2 CCH 3 + CH 3 + CH 3 CHCCH 3 H Cl Cl CH 3 CH 3 CCH 3 Cl CH 3 CH 3 CH 2 CCH 3 Cl © E.V. Blackburn, 2011

A more general “rule” Electrophilic addition to a carbon - carbon double bond involves the intermediate formation of the most stable carbocation.

Why? Let’s look at the transition state: + H + C C H  + + C C H + © E.V. Blackburn, 2011

A more general “rule” E a > E a E CH 3 CH 2 CH 2 + CH 3 CH=CH 2 + H + CH 3 CHCH 3 + © E.V. Blackburn, 2011

Carbocation rearrangements H 3 C CH 3 CH=CH 2 CH 3 HCl H 3 C CH 3 + CH-CH 3 CH 3 H 3 C CH 3 + CH-CH 3 CH 3 H 3 C CH + 3 H CH 3 CH 3 H 3 C Cl CH + 3 H CH 3 CH 3 H 3 C CH 3 Cl H CH 3 CH 3 © E.V. Blackburn, 2011

Oxymercuration © E.V. Blackburn, 2011

Oxymercuration An anti addition via a mercurinium ion: Dissociation: Electrophilic attack: Hg(OAc) 2 CH 3 CH 3 CO 2 + + HgOCOCH 3 + HgOCOCH 3 + HgOCOCH 3 CH 3 Nucleophilic opening: + HgOCOCH 3 CH 3 H-O-H CH 3 OH Hg OCOCH 3 H © E.V. Blackburn, 2011

Oxymercuration Why do we observe Markovnikov addition?

+ HgOAc   HgOAc In the mercurinium ion, the positive charge is shared between the more substituted carbon and the mercury atom.

Only a small portion of the charge resides on this carbon but it is sufficient to account for the orientation of the addition but is insufficient to allow a rearrangement to occur.

© E.V. Blackburn, 2011

Hydroboration H.C. Brown and G. Zweifel,

J. Am. Chem. Soc.,

83, 2544 (1961) + (BH 3 ) 2 diborane H B H 2 O 2 OH H OH + B(OH) 3 Brown was co-winner of the 1979 Nobel Prize in Chemistry.

© E.V. Blackburn, 2011

H 3 C Hydroboration 1. (BH 3 ) 2 2. H 2 O 2 /OH 3 HC H H OH trans-2-methyl cyclopentanol syn addition (CH 3 ) 3 CCH=CH 2 (CH 3 no rearrangement no carbocation!

) 3 CCH 2 CH 2 OH © E.V. Blackburn, 2011

Hydroboration (BH 3 ) 2 H 2 C=CH 2 CH 3 CH 2 BH 2 H 2 C=CH 2 (CH 3 CH 2 ) 2 BH H 2 C=CH 2 3C 2 H 5 OH + B(OH) 3 H 2 O 2 OH (CH 3 CH 2 ) 3 B © E.V. Blackburn, 2011

Hydroboration - the mechanism 1. (BH 3 ) 2 CH 3 CH=CH 2 2. H 2 O 2 /OH CH 3 CH 2 CH 2 OH CH 3 CH=CH 2 HX  CH 3 CH CH 2 H X  + CH 3 CHCH 3 + X © E.V. Blackburn, 2011

Hydroboration - the mechanism 1. (BH 3 ) 2 CH 3 CH=CH 2 2. H 2 O 2 /OH CH 3 CH 2 CH 2 OH CH 3 >  CH H CH 2 B  H H CH 3 >  CH H CH B H  2 H © E.V. Blackburn, 2011

Hydroboration - the mechanism R R B R R O-OH O OH R RO RO B OR HO R O OH R R R B OR + HO 3ROH + BO 3 3 © E.V. Blackburn, 2011

Addition of halogens + X 2 X C C X X 2 = Cl 2 , Br 2 CH 3 CH=CH 2 usually iodine does not react Br 2 in CH 3 CHBrCH 2 Br CCl 4 1,2-dibromopropane © E.V. Blackburn, 2011

Mechanism of X 2 addition C C X + + X-X C C X + + X C C X X  +  X X polarisation + X © E.V. Blackburn, 2011

Mechanism of X 2 addition H H H Br 2 H NaCl CH 2 BrCH 2 + NaCl Br no reaction CH 2 BrCH 2 Cl CH 2 BrCH 2 Br © E.V. Blackburn, 2011

Stereospecific reactions CH 3 CH=CHCH 3 Br 2 * * CH 3 CHBrCHBrCH 3 (Z)-2-butene gives racemic 2,3-dibromobutane and no meso compound is formed. (E)-2-butene gives only meso-2,3-dibromobutane.

A reaction is stereospecific if a particular stereoisomer of the reactant produces a specific stereoisomer of the product.

© E.V. Blackburn, 2011

syn

and

anti

addition Y

syn

Z Y-Z

anti

Y Z © E.V. Blackburn, 2011

Bromine addition - an

anti

addition I. Roberts and G.E. Kimball,

J. Am. Chem. Soc.,

59, 947 (1937) 1. Br Br 2.

Br C C + + Br Br + Br C C + bromonium ion Br C C Br © E.V. Blackburn, 2011

The bromonium ion Br-Br H H CH 3 CH 3 H Br H + CH 3 CH 3 H Br Br + H H Br H Br (S,S) H Br + H Br H Br (R,R) H Br © E.V. Blackburn, 2011

Halohydrin formation + X 2 + H 2 O X 2 = Cl 2 , Br 2 C C X OH + HX © E.V. Blackburn, 2011

Halohydrin formation CH 3 -CH=CH 2 + Br H 3 CHC CH 2 H 2 O Br 2 greater  + here + Br H 3 CHC CH 2 CH 3 CH-CH 2 Br H O + H CH 3 CH-CH 2 Br H O + H -H + 1-bromo-2-propanol © E.V. Blackburn, 2011

Unsymmetric electrophiles In the electrophilic addition of an unsymmetric reagent, the electrophilic part adds to the less substituted carbon of the alkene unit: CH 3 CH=CH 2  + A-B CH 3 CH-CH 2 B A © E.V. Blackburn, 2011

Free radical addition reactions + Y-Z peroxides or h  c C Y Z 1. peroxides Rad chain initiation 2. Rad + HBr RadH + Br 3. Br + 4.

Br + HBr Br Br H + Br propagation © E.V. Blackburn, 2011

ionic vs radical addition CH 3 CH=CH 2 HBr X + CH 3 CHCH 3 + CH 3 CH 2 CH 2 Br CH 3 CHCH 3 Br CH 3 CH=CH 2 Br CH 3 CHCH 2 Br HBr X CH 3 CHBrCH 2 CH 3 CH 2 CH 2 Br © E.V. Blackburn, 2011

Polymerization A polymer is a long chain molecule made up of structural units (monomers) joined together.

© E.V. Blackburn, 2011

Free radical polymerization of alkenes

Initiation

peroxide Rad + CH 2 =CH G Rad Rad-CH 2 -CH G © E.V. Blackburn, 2011

Free radical polymerization of alkenes

chain propagation

Rad-CH 2 -CH + CH 2 =CH G G Rad-CH 2 -CH-CH 2 -C H G G CH 2 =CHG Rad-CH 2 -CH-CH 2 -CH-CH 2 -C H G G G etc © E.V. Blackburn, 2011

Free radical polymerization of alkenes

Chain termination

2

combination

.

Rad(CH 2 -CH) n -CH 2 -CH G G Rad(CH 2 CH) n CH 2 CHCHCH G G G 2 (CH-CH 2 ) n Rad G © E.V. Blackburn, 2011

Free radical polymerization of alkenes

Chain termination

disproportionation

.

Rad(CH 2 -CH) n -CH 2 -CH G G Rad(CH 2 CH) n CH 2 CH 2 G G + Rad(CH 2 CH) n CH=C H G G © E.V. Blackburn, 2011

Examples G monomer polymer Cl CH 2 =CHCl -CH 2 CHCl-CH 2 CHCl-CH 2 vinyl chloride polyvinyl chloride, PVC CN CH 2 =CHCN -CH 2 CHCN-CH 2 CHCN acrylonitrile polyacrylonitrile Orlon, Acrilon © E.V. Blackburn, 2011

Examples G monomer polymer Ph CH 2 =CHPh -CH 2 CHPh-CH 2 CHPh styrene polystyrene Ph = C CH 3 CO 2 CH 3 CH 3 CH 2 =C CO 2 CH 3 methyl methacrylate CH 3 CH -CH 2 -C - CH 2 - C 3 CO 2 CH 3 CO 2 CH 3 poly(methyl methacrylate) Plexiglas, Lucite © E.V. Blackburn, 2011

Polymerization The addition of other compounds can modify the polymerization: .

-CH 2 -CH + CCl 4 -CH 2 -CHCl + CCl 3 .

CCl 3 + CH 2 =CH .

Cl 3 C-CH 2 -CH styrene polymer © E.V. Blackburn, 2011

Carbenes - + H 2 C N N  or h  H 2 C: + N 2 diazomethane methylene RO K + + H-CCl 3 ROH + K + + Cl + Cl 2 C: dichlorocarbene CH 2 I 2 + Zn(Cu) ICH 2 ZnI a carbenoid Carbenes (and carbenoids) add to alkenes in a stereospecific manner to form cyclopropanes.

© E.V. Blackburn, 2011

Carbenes KOC(CH 3 ) 3 CHBr 3 H Br Br H H CH 2 I 2 /Zn(Cu) H © E.V. Blackburn, 2011

Hydroxylation KMnO 4 , HCO 2 OH or OsO 4 OH OH a glycol © E.V. Blackburn, 2011

Ozonolysis + O 3 O O O molozonide O + O O O O H 2 O/Zn aldehydes and ketones O O O ozonide © E.V. Blackburn, 2011

Ozonolysis CH 3 CH 2 CH=CHCH 3 1. O 3 2. Zn/H 2 O H H CH 3 CH 2 C=O + O=CCH 3 H C C CH 3 H 3 C CH 3 1. O 3 2. Zn/H 2 O CH 3 CHO + O CH 3 CH 3 © E.V. Blackburn, 2011

KMnO 4 oxidation H 3 H C CH 3 CH CH 3 C C CH 3 2 KMnO 4 CH=CH 2 CH 3 CH 3 CO 2 H + O CH 3 KMnO 4 CH 3 CH 2 CO 2 H + CO 2 © E.V. Blackburn, 2011

Addition of halogen to alkynes C C X 2 X C C X X 2 X X X X © E.V. Blackburn, 2011

Addition of HX to alkynes H 3 C C C H HCl H C C Cl H CH 3 HI H H H I Cl CH 3 Does this seem reasonable?

H Cl H C C CH 3 H H H + v Cl CH 3 This carbocation should be destabilized by the inductive effect of the Cl!

H H H + Cl CH 3 H H H Cl + CH 3 The cation is stablized by resonance! Remember this in CHEM 263 © E.V. Blackburn, 2011

1.

H 2 , Pd/CaCO 3 quinoline Na, NH 3 , -78 o C H H H H 2.

CH 3 CH=CH 2 1. Hg(OAc) 2 /THF-H 2 O 2. NaBH 4 CH 3 CH(OH)CH 3 CH 3 CH=CH 2 1. B 2 H 6 2. H 2 O 2 /OH CH 3 CH 2 CH 2 OH 3. CH 3 CH=CH 2 CH 3 CH=CH 2 HBr/-O-O HBr/-O-O CH CH 3 3 CH 2 CH 2 CHBrCH Br 3 © E.V. Blackburn, 2011