Transcript ppt
MANE 4240 & CIVL 4240
Introduction to Finite Elements
Prof. Suvranu De
Development of Truss
Equations
Reading assignment:
Chapter 3: Sections 3.1-3.9 + Lecture notes
Summary:
• Stiffness matrix of a bar/truss element
• Coordinate transformation
• Stiffness matrix of a truss element in 2D space
•Problems in 2D truss analysis (including multipoint
constraints)
•3D Truss element
Trusses: Engineering structures that are composed only
of two-force members. e.g., bridges, roof supports
Actual trusses: Airy structures composed of slender
members (I-beams, channels, angles, bars etc) joined
together at their ends by welding, riveted connections or
large bolts and pins
A typical truss structure
Gusset plate
Ideal trusses:
Assumptions
• Ideal truss members are connected only at their ends.
• Ideal truss members are connected by frictionless pins (no
moments)
• The truss structure is loaded only at the pins
• Weights of the members are neglected
A typical truss structure
Frictionless pin
These assumptions allow us to idealize each truss
member as a two-force member (members loaded only
at their extremities by equal opposite and collinear
forces)
member in
compression
member in
tension
Connecting pin
FEM analysis scheme
Step 1: Divide the truss into bar/truss elements connected to
each other through special points (“nodes”)
Step 2: Describe the behavior of each bar element (i.e. derive its
stiffness matrix and load vector in local AND global coordinate
system)
Step 3: Describe the behavior of the entire truss by putting
together the behavior of each of the bar elements (by assembling
their stiffness matrices and load vectors)
Step 4: Apply appropriate boundary conditions and solve
Stiffness matrix of bar element
E, A
© 2002 Brooks/Cole Publishing / Thomson Learning™
L: Length of bar
A: Cross sectional area of bar
E: Elastic (Young’s) modulus of bar
uˆ ( xˆ ) :displacement of bar as a function of local coordinate
The strain in the bar at xˆ
d uˆ
ε( xˆ )
d xˆ
The stress in the bar (Hooke’s law)
( xˆ ) E ε( xˆ )
xˆ
of bar
dˆ 2x
Tension in the bar
T( xˆ ) EA ε
dˆ 1x
xˆ
Assume that the displacement
uˆ ( xˆ )
xˆ
L
is varying linearly along the bar
xˆ ˆ
xˆ ˆ
uˆ ( xˆ ) 1 d 1x d 2x
L
L
Then, strain is constant along the bar:
Stress is also constant along the bar:
Tension is constant along the bar:
xˆ
xˆ
uˆ ( xˆ ) 1 dˆ 1x dˆ 2x
L
L
ε
d uˆ
d xˆ
dˆ 2x dˆ 1x
L
E ˆ
Eε
d 2x dˆ 1x
L
EA ˆ
T EA ε
d 2x dˆ 1x
L
k
The bar is acting like a spring with stiffness
k
EA
L
Recall the lecture on springs
E, A
© 2002 Brooks/Cole Publishing / Thomson Learning™
Two nodes: 1, 2
Nodal displacements: dˆ 1x dˆ 2x
Nodal forces: fˆ1x fˆ 2x
Spring constant: k EA
L
Element stiffness matrix in local coordinates
Element force
vector
- k
fˆ1x
k
dˆ 1x
ˆf kˆ dˆ
ˆ
ˆ
k
- k
d 2x
2x
f
Element nodal
Element
stiffness
matrix
displacement
vector
fˆ
kˆ
dˆ
What if we have 2 bars?
E1, A1
E2, A2
L2
L1
This is equivalent to the following system of springs
k1
E 1A 1
L1
k2
E 2A 2
L2
x
Element 1 2 Element 23
1
d1x
PROBLEM
d2x
d3x
Problem 1: Find the stresses in the two-bar assembly loaded as
shown below
E, 2A
E, A
P
1
2
3
L
L
Solution: This is equivalent to the following system of springs
k1
1
2E A
L
k2
EA
L
x
Element 1 2 Element 23
d1x
d2x
d3x
We will first compute the displacement at node 2 and then the
stresses within each element
The global set of equations can be generated using the technique
developed in the lecture on “springs”
k1
k
1
0
here
k1
k1 k 2
k2
d1 x d 3 x 0
0 d 1x F1x
k 2 d 2 x F2 x
F
k 2
d
3x 3x
and F2 x P
Hence, the above set of equations may be explicitly written as
k 1 d 2 x F1 x
(1)
( k1 k 2 ) d 2 x P
(2 )
k 2 d 2 x F3 x
(3)
From equation (2) d 2 x
P
k1 k 2
PL
3EA
To calculate the stresses:
For element #1 first compute the element strain
(1)
d 2 x d1x
d2x
L
L
P
3EA
and then the stress as
(1)
E
P
(1)
(element in tension)
3A
Similarly, in element # 2
(2)
d3x d2x
L
(2)
E
(2)
d2x
L
P
3A
P
3EA
(element in compression)
© 2002 Brooks/Cole Publishing / Thomson Learning™
Inter-element continuity of a two-bar structure
Bars in a truss have various orientations
member in
compression
member in
tension
Connecting pin
d 2y , f 2y
y
dˆ 2y , fˆ2y 0
yˆ
dˆ 2x , fˆ 2x
d 2x , f 2x
d1y , f1y
θ
dˆ 1y , fˆ1y 0
dˆ 1x , fˆ1x
xˆ
d1x , f1x
x
At node 1:
θ
dˆ 1x
d1x
θ
f1x
dˆ 1y
d1y
fˆ1y 0
fˆ1 x
f1y
At node 2:
θ
dˆ 2 x
f 2x
d 2y
fˆ 2y 0
d 2x
θ
dˆ 2y
fˆ 2 x
f 2y
In the global coordinate system, the vector of nodal
displacements and loads
d 1x
d
1y
d
;
d 2x
d 2y
f 1x
f 1y
f
f 2x
f 2y
Our objective is to obtain a relation of the form
f k d
4 1
4 4 4 1
Where k is the 4x4 element stiffness matrix in global coordinate
system
The key is to look at the local coordinates
xˆ
y
dˆ 2y , fˆ2y 0
yˆ
dˆ 2x , fˆ 2x
dˆ 1y , fˆ1y 0
fˆ1x
k
ˆ
f 2x
- k
θ
- k
dˆ 1x
ˆ
k
d 2x
dˆ 1x , fˆ1x
k
x
Rewrite as fˆ
1x
k
0
fˆ1y
ˆ
f 2x - k
ˆ 0
f 2y
0
-k
0
0
0
k
0
0
EA
L
ˆ
0 d 1x
ˆ
0 d 1y
ˆ
0 d 2x
0 dˆ
2y
fˆ kˆ dˆ
NOTES
1. Assume that there is no stiffness in the local ^y direction.
2. If you consider the displacement at a point along the local x
direction as a vector, then the components of that vector along the
global x and y directions are the global x and y displacements.
3. The expanded stiffness matrix in the local coordinates is
symmetric and singular.
NOTES
5. In local coordinates we have
fˆ kˆ dˆ
4 1
4 4 4 1
But or goal is to obtain the following relationship
f k d
4 1
4 4 4 1
Hence, need a relationship between dˆ and d
dˆ
and between fˆ and f
1y
ˆ
d
1x
d 1x
ˆ
d 1y ˆ d 1y
d
d ˆ
d 2x
d 2x
d 2y
ˆ
d 2y
θ
dˆ 1x
d1x
θ
d 2x
d1y
dˆ 2y
dˆ 2 x
d 2y
Need to understand
how the components
of a vector change
with coordinate
transformation
Transformation of a vector in two dimensions
yˆ
y
v y cos θ
vx
ˆx
v
θ
v
vˆ y
vy
v x sin θ
xˆ
Angle q is
measured positive
in the counter
clockwise direction
from the +x axis)
θ
v x cos θ
v y sin θ
x
The vector v has components (vx, vy) in the global coordinate system
and (v^x, v^y) in the local coordinate system. From geometry
ˆ x v x cos θ v y sin θ
v
ˆ y v x sin θ v y cos θ
v
In matrix form
ˆ x cos θ
v
ˆ
v y sin θ
sin θ v x
v
cos θ y
Direction cosines
Or
ˆx l
v
ˆ
v y m
m vx
l vy
where
l cos q
m sin q
Transformation matrix for a single vector in 2D
l
T
m
*
where
m
l
relates
*
ˆ T v
v
ˆx
v
vx
ˆ and v
v
ˆ
vy
vy
are components of the same
vector in local and global
coordinates, respectively.
Relationship between dˆ and d for the truss element
dˆ 1y
At node 1
At node 2
d
dˆ 1x
* 1x
ˆ T
d1y
d1y
d
dˆ 2x
* 2x
ˆ T
d
d
2y
2y
Putting these together
dˆ T d
dˆ 1x
θ
dˆ 2y
d1x
θ
dˆ 2 x
d 2y
d 2x
dˆ 1x
m
0
0 d 1x
l
m l
0
0 d 1y
dˆ 1y
ˆ
d
0
0
l
m 2x
d 2x
ˆ 0
0 m l d 2y
d
2y
d
T
dˆ
d1y
T *
T
4 4
0
0
*
T
Relationship between fˆ and f for the truss element
At node 1
At node 2
f
fˆ1x
* 1x
ˆ T
f1y
f1y
f
fˆ2x
* 2x
ˆ T
f 2y
f 2y
Putting these together
fˆ T f
fˆ1x
m
0
0 f 1x
l
m
l
0
0 f 1y
fˆ1y
ˆ
0
l
m f 2x
f 2x 0
ˆ 0
0 m
l f 2y
f
2y
f
T
fˆ
fˆ1 y
θ
f1y
fˆ1 x
fˆ 2 y
f1x
θ
fˆ 2 x
f 2y
f 2x
T *
T
4 4
0
0
*
T
Important property of the transformation matrix T
The transformation matrix is orthogonal, i.e. its inverse is its
transpose
T
1
T
T
Use the property that l2+m2=1
Putting all the pieces together
xˆ
y
dˆ 2y , fˆ 2y
yˆ
dˆ T d
dˆ 2x , fˆ 2x
dˆ 1y , fˆ1y
fˆ kˆ dˆ
θ
dˆ 1x , fˆ1x
T f kˆ T d
x
The desired relationship is
Where
k T
4 4
fˆ T f
T
kˆ T
4 4 4 4 4 4
f k d
4 1
f T kˆ T d
1
k
4 4 4 1
is the element stiffness matrix in the
global coordinate system
l
m
T
0
0
m
0
l
0
0
l
0
m
0
0
m
l
l2
EA lm
T ˆ
k T kT
L l2
lm
k
0
ˆk
- k
0
l
lm
m
2
lm
2
lm
l
m
lm
2
2
0
-k
0
0
0
k
0
0
lm
m
lm
m
2
2
0
0
0
0
Computation of the direction cosines
l cos q
x2 x1
L
2 (x2,y2)
L
m sin q
y2 y1
θ
1
L
(x1,y1)
What happens if I reverse the node numbers?
l ' cos q
x1 x2
L
l
L
m' sin q
y1 y2
L
m
θ
2 (x ,y )
2 2
Question: Does the stiffness matrix change?
1 (x1,y1)
Example Bar element for stiffness matrix evaluation
E 30 10
© 2002 Brooks/Cole Publishing / Thomson Learning™
A 2 in
6
psi
2
L 60 in
q 30
l cos 30
3
2
3
4
3
6
30 10 2 4
k
60
3
4
3
4
3
4
1
4
3
3
4
3
4
3
4
1
4
3
4
4
3
4
1
4 lb
in
3
4
1
4
m sin 30
1
2
Computation of element strains
© 2002 Brooks/Cole Publishing / Thomson Learning™
Recall that the element strain is
ε
dˆ 2x dˆ 1x
L
1
L
1
L
1
L
1
1
0
1
0 dˆ
1
0
1
0 T d
0
1
dˆ 1x
dˆ 1y
0
ˆ
d
2x
ˆ
d 2y
ε
1
L
1
L
1
L
1
l
l
0
l
m
0
0
0
1
m
m
l
l
m
0
l
0
0
l
0
m
m d
d 1x
d 1y
m
d
2x
d 2y
0
d
m
l
0
Computation of element stresses stress and tension
Recall that the element stress is
Eε
E ˆ
E
d 2x dˆ 1x l
L
L
Recall that the element tension is
T EAε
EA
L
l
m
l
md
m
l
m d
Steps in solving a problem
Step 1: Write down the node-element connectivity table
linking local and global nodes; also form the table of
direction cosines (l, m)
Step 2: Write down the stiffness matrix of each element in
global coordinate system with global numbering
Step 3: Assemble the element stiffness matrices to form the
global stiffness matrix for the entire structure using the
node element connectivity table
Step 4: Incorporate appropriate boundary conditions
Step 5: Solve resulting set of reduced equations for the unknown
displacements
Step 6: Compute the unknown nodal forces
Node element connectivity table
ELEMENT Node 1 Node 2
1
1
2
2
2
3
3
3
1
1
El 1
2
60
60
L
El 3
60
El 2
θ
3
1 (x ,y )
1 1
2 (x2,y2)
Stiffness matrix of element 1
d1x d1y d2x d2y
d1x
d1y
(1 )
k
d2x
d2y
Stiffness matrix of element 3
d3x d3y d1x d1y
d3x
d3y
(3)
k
d1x
d1y
Stiffness matrix of element 2
d2x d2y d3x d3y
d2x
d2y
(2)
k
d3x
d3y
There are 4 degrees of
freedom (dof) per
element (2 per node)
k
(1 )
Global stiffness matrix
d1x d1y d2x d2y d3x d3y
d1x
d1y
d2x
K
d
2y
d3x
d3y
6 6
How do you incorporate boundary conditions?
k
k
(2)
(3)
Example 2
The length of bars 12 and 23 are equal (L)
E: Young’s modulus
A: Cross sectional area of each bar
Solve for
P1 (1) d and d
2x
2y
(2) Stresses in each bar
y
3
El#2 P2
El#1
2
45o
1
x
Solution
Step 1: Node element connectivity table
ELEMENT Node 1 Node 2
1
1
2
2
2
3
Table of nodal coordinates
Node
x
y
1
0
0
2
Lcos45
Lsin45
3
0
2Lsin45
Table of direction cosines
ELEMENT
Length
l
x2 x1
length
m
y2 y1
length
1
L
cos45
sin45
2
L
-cos45
sin45
Step 2: Stiffness matrix of each element in global coordinates
with global numbering
Stiffness matrix of element 1
k
(1)
l2
E A lm
L l 2
lm
d1x
1
EA 1
2L 1
1
l
lm
m
2
lm
2
lm
l
m
lm
2
2
d1y d2x
1
1
1
1
1
1
1
1
lm
2
m
lm
2
m
d2y
1
1
1
1
d1x
d1y
d2x
d2y
Stiffness matrix of element 2
k
(2)
d2x d2y
d3x
d3y
1
1
1
1
1
1
1
1
1
1
1
1
EA 1
2L 1
1
1
d2x
d2y
d3x
d3y
Step 3: Assemble the global stiffness matrix
1
1
EA 1
K
2L 1
0
0
1
1
1
0
1
1
1
0
1
2
0
1
1
0
2
1
0
1
1
1
0
1
1
1
0
0
1
1
1
1
The final set of equations is K d F
Step 4: Incorporate boundary conditions
0
0
d2x
d
d2y
0
0
Hence reduced set of equations to solve for unknown
displacements at node 2
EA 2
2 L 0
0 d2x
P1
d
2 2y
P2
Step 5: Solve for unknown displacements
d2x
d2y
P1 L
EA
P2 L
EA
Step 6: Obtain stresses in the elements
For element #1:
(1)
E 1
L
2
E
2L
1
2
(d 2 x d 2 y )
1
2
P1 P2
A 2
d1x
d
1 1y
d
2 2x
d2 y
0
0
For element #2:
(2)
E 1
L 2
E
2L
1
2
(d 2 x d 2 y )
1
2
P1 P2
A 2
d2x
d
1 2y
d
2 3x
d3y
0
0
Multi-point constraints
© 2002 Brooks/Cole Publishing / Thomson Learning™
Figure 3-19 Plane truss with inclined boundary
conditions at node 3 (see problem worked out in class)
Problem 3: For the plane truss
y
P
3
El#2
2
El#1
P=1000 kN,
L=length of elements 1 and 2 = 1m
E=210 GPa
A = 6×10-4m2 for elements 1 and 2
= 6 2 ×10-4 m2 for element 3
El#3
45o
1
x
Determine the unknown displacements
and reaction forces.
Solution
Step 1: Node element connectivity table
ELEMENT Node 1 Node 2
1
2
3
1
2
1
2
3
3
Table of nodal coordinates
Node
x
y
1
0
0
2
0
L
3
L
L
Table of direction cosines
ELEMENT
Length
l
x2 x1
m
y2 y1
length
length
1
L
0
1
2
L
1
0
3
L
2
1/
2
1/
2
Step 2: Stiffness matrix of each element in global coordinates
with global numbering
Stiffness matrix of element 1
k
(1)
l2
E A lm
L l 2
lm
lm
l
m
lm
lm
2
m
lm
2
m
d1x
d1y d2x
l
lm
m
2
lm
2
2
2
0
9
-4
(210 10 )(6 10 ) 0
0
1
0
0
0
1
0
0
0
1
0
d2y
1
0
1
0
d1x
d1y
d2x
d2y
Stiffness matrix of element 2 d2x d2y
d3x
d3y
1
9
-4
(210 10 )(6 10 ) 0
1
1
0
0
1
0
0
0
1
0
0
0
0
0
0
k
(2)
d2x
d2y
d3x
d3y
Stiffness matrix of element 3
k
(3)
d1x
d1y
d3x
0.5
9
-4
(210 10 )(6 2 10 ) 0.5
0.5
2
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
d3y
0.5
0.5
0.5
0.5
d1x
d1y
d3x
d3y
Step 3: Assemble the global stiffness matrix
0.5
0.5
0
5
K 1260 10
0
0.5
0.5
0.5
0
0
0.5
1.5
0
1
0.5
0
1
0
1
1
0
1
0
0.5
1
0
1.5
0.5
0
0
0.5
The final set of equations is K d F
0.5
0.5
0
0
0.5
0.5
Eq(1)
N/m
Step 4: Incorporate boundary conditions
y
0
0
d2x
d
0
d3x
d3y
Also,
d 3y 0
P
y
x
3
El#2
2
El#1
El#3
45o
1
x
in the local coordinate system of element 3
How do I convert this to a boundary condition in the global (x,y)
coordinates?
y
F1 x
F
1y
P
F
F
2y
F3 x
F3 y
Also,
F 3x 0
x
y
P
3
El#2
2
El#1
El#3
45o
1
x
in the local coordinate system of element 3
How do I convert this to a boundary condition in the global (x,y)
coordinates?
Using coordinate transformations
d 3x
d 3y
l
m
d 3x
d 3y
m d3x
d l m
l 3y
1
2
1
2
d 3y 0
d
2
1
1
2 d3x
2
1 d3y
1
2
2
(Multi-point constraint)
3y
1
1
2
d
d3 y d3x 0
3y
d3x
Eq (2)
0
d
d
3x
3 y
d 3 y d 3 x
Similarly for the forces at node 3
F
F
3x
3y
F
F
l
m
3x
3y
m F3 x
F l m
n 3y
1
2
1
2
3x
2
1
1
2 F3 x
2
1 F3 y
1
2
2
F 3x 0
F
1
1
2
F
F3 y F3 x 0
3y
F3 x
Eq (3)
0
F
F
3x
3 y
F3 y F3 x
Therefore we need to solve the following equations simultaneously
Kd F
Eq(1)
Eq(2)
d3 y d3x 0
Eq(3)
F3 y F3 x 0
Incorporate boundary conditions and reduce Eq(1) to
1
5
1260 10
1
0
1
1 .5
0 .5
0
0 .5
0 .5
d2x
d3x
d
3y
P
F3 x
F
3y
Write these equations out explicitly
Eq(4)
1260 10 (d 2 x d 3x ) P
5
1 2 6 0 1 0 ( d 2 x 1 .5 d 3 x 0 .5 d 3 y ) F3 x
Eq(5)
1 2 6 0 1 0 (0 .5 d 3 x 0 .5 d 3 y ) F3 y
Eq(6)
5
5
Add Eq (5) and (6)
1 2 6 0 1 0 ( d 2 x 2 d 3 x d 3 y ) F3 x F3 y 0 using
5
1260 10 ( d 2 x 3d 3 x ) 0
5
using Eq(2)
d 2 x 3 d 3 x Eq(7)
1 2 6 0 1 0 (3 d 3 x d 3 x ) P
5
Plug this into Eq(4)
2520 10 d3x 10
5
6
Eq(3)
d 3 x 0 .0 0 3 9 6 8 m
d 2 x 3 d 3 x 0 .0 1 1 9 m
Compute the reaction forces
F1 x
F
1y
F2 y
F
3x
F3 y
5
1
2
6
0
1
0
500
500
0 kN
500
500
0
0
0
1
0
0 .5
0 .5
0
1 .5
0 .5
0 .5
0 .5
0
0 .5
0 .5
d2x
d3x
d
3y
Physical significance of the stiffness matrix
In general, we will have a stiffness matrix of the form
k 11
K k 21
k 31
k 12
k 22
k 32
k 13
k 23
k 33
And the finite element force-displacement relation
k 11
k
21
k 31
k 12
k 22
k 32
k 13 d 1 F1
k 23 d 2 F2
k 33 d 3 F3
Physical significance of the stiffness matrix
The first equation is
k 11 d 1 k 12 d 2 k 13 d 3 F1
Force equilibrium
equation at node 1
Columns of the global stiffness matrix
What if d1=1, d2=0, d3=0 ?
F1 k 11
F2 k 21
F3 k 31
While d.o.f 2 and 3 are held fixed
Force along d.o.f 1 due to unit displacement at d.o.f 1
Force along d.o.f 2 due to unit displacement at d.o.f 1
Force along d.o.f 3 due to unit displacement at d.o.f 1
Similarly we obtain the physical significance of the other
entries of the global stiffness matrix
In general
k ij
= Force at d.o.f ‘i’ due to unit displacement at d.o.f ‘j’
keeping all the other d.o.fs fixed
Example
The length of bars 12 and 23 are equal (L)
E: Young’s modulus
A: Cross sectional area of each bar
Solve for d2x and d2y using the “physical
P1 interpretation” approach
y
3
El#2 P2
El#1
2
45o
1
x
Solution
Notice that the final set of equations will be of the form
k 11
k 21
k 12 d 2 x P1
d
k 22 2 y P2
Where k11, k12, k21 and k22 will be determined using the
“physical interpretation” approach
To obtain the first column
2 1.cos(45)
y
3
F2y=k21
El#2
2
2
x
1 1.cos(45)
d2x=1
Force equilibrium
F
F x k11 T1 cos(45) T 2 cos(45) 0
y
d2x 1
d2y 0
F2y=k21
T2
F2x=k11
2’
El#1
1
1
k1 1
apply
k 21 y
k 21 T1 sin(45) T 2 sin(45) 0
F2x=k11
T1
2
x
1
2
Force-deformation relations
T1
EA
T2
EA
L
L
1
2
Combining force equilibrium and force-deformation relations
k11
k 21
T1 T2
2
EA
2L
T1 T2
2
EA
2L
1 2
1 2
Now use the geometric (compatibility) conditions (see figure)
1 1.cos(45)
1
2 1.cos(45)
1
2
2
Finally
k 11
EA
k 21
EA
2L
2L
1 2
EA
1 2 0
2L
(
2
2
)
EA
L
k
To obtain the second column 1 2 apply d 2 x 0
y
d2y 1
k 2 2 y
3
1
1.cos(45)
F2y=k22
2
2’
T2
El#2
d2y=1
F2x=k12
2
El#1
T1
2
x
1
x
1.cos(45)
1
2
1
Force equilibrium
F
F x k12 T1 cos(45) T 2 cos(45) 0
y
k 22 T1 sin(45) T 2 sin(45) 0
2
Force-deformation relations
T1
EA
T2
EA
L
L
1
2
Combining force equilibrium and force-deformation relations
k12
k 22
T1 T2
EA
2
T1 T2
2L
EA
2
2L
1 2
1 2
Now use the geometric (compatibility) conditions (see figure)
1 1.cos(45)
1
2
2 1.cos(45)
1
This negative is due to compression
2
Finally
k 12
EA
k 22
EA
2L
2L
1 2 0
1 2
EA
2L
(
2
2
)
EA
L
© 2002 Brooks/Cole Publishing / Thomson Learning™
3D Truss (space truss)
fˆ kˆ dˆ
In local coordinate system
fˆ1x
fˆ1y
fˆ1z
ˆ
f 2x
ˆ
f
2y
ˆ
f 2z
k
0
0
k
0
0
0
0
k
0
0
0
0
0
0
0
0
0
0
0
k
0
0
0
0
0
0
0
0
0
dˆ 1x
0
dˆ
0
1y
0 dˆ 1z
ˆ
0 d 2x
0 dˆ
2y
0 ˆ
d 2z
The transformation matrix for a single vector in 3D
*
dˆ T d
l1
*
T l2
l 3
m1
m2
m3
n1
n2
n3
© 2002 Brooks/Cole Publishing / Thomson Learning™
l1, m1 and n1 are the direction cosines of x^
l1 cos q x
m 1 cos q y
n 1 cos q z
Transformation matrix T relating the local and global
displacement and load vectors of the truss element
dˆ T d
T *
T
6 6
0
fˆ T f
0
*
T
Element stiffness matrix in global coordinates
k T
6 6
T
kˆ T
6 6 6 6 6 6
l1 2
l1 m 1
EA l1 n 1
T ˆ
k T kT
2
L l1
l m
1 1
l1 n 1
l1 m 1
m1
2
m 1 n1
l1 m 1
m1
2
m 1 n1
2
l1 n 1
l1
m 1 n1
l1 m 1
m1
l1 n 1
m 1 n1
n1
2
l1 n 1
m 1 n1
n1
2
l1
2
l1 m 1
2
l1 m 1
2
l1 m 1
m1
l1 n 1
m 1 n1
l1 n 1
m 1 n1
2
n1
l1 n 1
m 1 n1
2
n 1
Notice that the direction cosines of only the local ^x axis enter the
k matrix