Alessandra Chinaglia UTIC Ospedale Maria Vittoria, ASLTO2

Download Report

Transcript Alessandra Chinaglia UTIC Ospedale Maria Vittoria, ASLTO2

MOBILIZZAZIONI E ATTIVITÀ MOTORIA NEL PAZIENTE CON INFARTO
MIOCARDICO ACUTO E CON INSUFFICIENZA CARDIACA REFRATTARIA
Premesse fisiopatologiche
Alessandra Chinaglia
UTIC Ospedale Maria Vittoria, ASLTO2
Riposo a letto: è un trattamento benefico ?
• Fino agli anni ‘50 trattamento di
scelta per infarto miocardico ed altre
patologie
J A M A 1944
The evil sequelae of complete bed rest.
• 39 trials sul riposo a letto
• 15 patologia differenti (5777 pazienti)
• Cardiologiche: IMA e post cateterismo
In nessun trial miglioramento clinico con il riposo a letto
(o nessun miglioramento clinico o peggioramento)
Allen,Lancet 1999; 354: 1 2 2 9 – 3 3
ATROFIA MUSCOLARE DA INATTIVITA’
•
•
•
•
•
•
Proteolisi
Ridotta sintesi proteica da inibizione dei fattori di iniziazione
Perdita di massa muscolare
Riduzione dello spessore delle fibre
Riduzione della capacità muscolare
Passaggio da fibre muscolari lente (resistenti alla fatica) a fibre
muscolari veloci
• Variazione del metabolismo (da acidi grassi a glucosio)
L’attività muscolare svolge un ruolo
antiinfiammatorio
Immobilità
Aumento delle citochine circolanti
Stato pro infiammatorio
Perdita di tessuto muscolare
IMPATTO FUNZIONALE DEL RIPOSO A LETTO PER 10 GIORNI IN ADULTI SANI ANZIANI
•
•
•
•
11 uomini e donne
età 67 +/- 5 anni
riposo a letto per 10 giorni
dieta normocalorica
Forza di estensione del ginocchio
Potenza nel salire le scale
Capacità massimale aerobica
-13.2% p =.004
-14 % p =.01
-12% p =.04
Kortebein P J Gerontol A Biol Sci Med Sci 2008; 63:1076-81
Capacità muscolare
Perdita di forza del quadricipite
dell’1% - 1.5% per ogni giorno di
riposo a letto (individui sani)
Negli anziani ulteriore peggioramento
Donne: 36.3%
Età media: 69.9+13.2 anni
Mediana (range 25-75°): 72 (61-80) anni
Età > 75 anni: 38.9% dei pazienti
3
Densità ossea
• L’osso viene continuamente rimodellato in base al carico meccanico
(forza di gravità e sollecitazioni meccaniche muscolari)
• Il riposo a letto comporta riduzione nella densità ossea della colonna
lombare, testa del femore, e calcagno.
• dopo la ripresa della mobilizzazione il recupero della densità ossea
è lento
• rischio di fratture (particolarmente nelle donne anziane)
Effetti del riposo a letto prolungato sulle strutture osteomuscolari del tronco
•
•
•
•
•
Dolore lombare
Allungamento della colonna
Atrofia della muscolatura spinale
Aumento dell’altezza dei dischi intervertebrali
Alterata composizione dei dischi intervertebrali
Le alterazioni della morfologia
dei dischi intervertebrali
persistono per 5 mesi dopo
riposo a letto per 21 giorni.
Hides, Eur Spine J (2011) 20:808–818
Ulcere da decubito
• Il processo che porta alle ulcere inizia dopo poche ore di immobilità
• Riguarda le zone sottoposte a pressione in corrispondenza di
prominenze ossee
• Facilitato da barelle troppo strette per permettere i movimenti, età
avanzata, sedazione, incoscienza, immobilità prolungata
Effetti dell’allettamento sul polmone
• Ridotta espansione polmonare
• Ridotta capacità respiratoria
• Atelettasie
• Polmoniti
Effetti dell’allettamento sul sistema cardiovascolare
• Riduzione della compliance delle vene delle gambe
• Perdita di fluidi che determinano ipotensione ortostatica,
tachicardia, riduzione della gittata cardiaca, della portata
cardiaca e delle resistenze vascolari
• Disfunzione microvascolare
Disfunzione microvascolare da inattività
Hamburg, Arterioscler Thromb Vasc Biol. 2007;27:2650-2656
Malnutrizione
• 40% dei pazienti ospedalizzati sono già denutriti al momento del
ricovero
• I pazienti ricoverati in terapia intensiva ricevono meno del 60% del
loro fabbisogno calorico
• Spesso la denutrizione è prevalentemente proteica
• La perdita di proteine viene controbilanciata utilizzando
prevalentemente proteine muscolari
Allettamento richiede terapia antitrombotica !
Prevenzione embolia
Sanguinamento
invasive
conservative
Beneficio
Rischio
Surviving the intensive care: residual physical, cognitive, and
emotional dysfunction.
• I pazienti ricoverati per malattie acute e critiche possono soffrire di
problemi fisici, psicologici e cognitivi
• Depressione secondaria alla sensazione di dipendenza anche nelle
più elementari attività, allo stress per la gravità della malattia, alla
consapevolezza della vulnerabilità
→ Mobilizzazione precoce, riabilitazione e fisioterapia
Jones, Thorac Surg Clin 2012 Nov;22(4):509-16
Mr E, a 56-year-old man with severe chronic obstructive pulmonary disease and
acute renal failure, ambulating on day 4 after admission to the medical intensive
care unit while receiving mechanical ventilation via an oral endotracheal tube.
Needham, JAMA. 2008;300(14):1685-1690
CONTROINDICAZIONI:
• frequenza cardiaca > 110/min a riposo
• pressione arteriosa media < 60
• stato di shock
• necessità di FiO2 > 60%
• aritmie ventricolari subentranti
La mobilizzazione precoce in pazienti critici con
insufficienza respiratoria non è solo fattibile e sicura ma
previene le complicazioni neuromuscolari
American Journal of Critical Care, 2009;18:212-221
Move to Improve: The Feasibility of Using an Early Mobility Protocol to
Increase Ambulation in the Intensive and Intermediate Care Settings.
• 16 letti Adult Medical/Surgical ICU /26 letti Adult
Intermediate Care Unit (IMCU)
• team multidisciplinare
• algoritmo per indirizzare la valutazione della potenziale
mobilità
• Daily Ambulation Status Reports rivalutato ogni mattina
per determinare il livello di mobilizzazione.
• Nei 3 mesi precedenti la mobilizzazione entro 72 ore è
avvenuta nel 6.2% dei pazienti ICU e 15.5% dei pazienti
IMCU
• Nei 6 mesi dopo nel 20.2% dei pazienti ICU e 71.8% dei
pazienti IMCU.
Drolet A,Phys Ther. 2012 Sep 13
E’ sufficiente fare esercizi al letto ?
• Non controbilanciano gli effetti avversi del riposo a letto,
in particolare l’accumulo di liquidi nel torace rispetto agli
arti inferiori per l’assenza di gravità
• Nei piani di assistenza sulla mobilizzazione è quindi
raccomandata la posizione ortostatica
Early mobilisation for patients following acute myocardiac infarction: a
systematic review and meta-analysis of experimental studies
•
•
Mortalità per tutte le cause o reinfarto a un anno dall’IMA.
14 studi (13 pubblicati prima del 1983).
MOBILIZZAZIONE PRECOCE
(1541)
CONTROLLO
(1518)
MORTE
149 (9,3%)
179 (11.6% )
RR=0.85, 95% CI 0.68, 1.05
REINFARTO
82 (5,2%)
80 (5.3%)
RR=1.02, 95% CI 0.75, 1.39
Cortes, Int J Nurs Stud. 2009 Nov;46(11):1496-504
•
•
•
•
i pazienti con disfunzione ventricolare sinistra devono inizialmente restare a letto per
escludere scompenso precoce ed aritmie.
nei casi non complicati il paziente può sedersi fuori dal letto in I giornata, utilizzare la comoda,
lavarsi e nutrirsi da solo.
si può iniziare precocemente a camminare (in particolare nei pazienti trattati per via radiale)
i pazienti con complicazioni devono essere mantenuti a letto e la loro attività fisica deve
riprendere in funzione dei sintomi e dell’entità del danno miocardico.
Mobilizzazione post IMA: controindicazioni:
 scompenso cardiaco instabile e incontrollabile
 dolore toracico persistente
 PA instabile, shock
 tachicardia inappropriata
 aritmie persistenti e severe
E I PAZIENTI CON SCOMPENSO ?
Eur J Heart Fail. 2010 January; 12(1): 58–65
Esercizio fisico
nel paziente con
scompenso cardiaco
Cardiol Res Pract. 2011; 2011: 837238.
Attività muscolare: riflesso dal muscolo al sistema cardiovascolare e respiratorio
Riflesso esagerato nei pazienti con scompenso cardiaco
Riflesso causa attivazione del sistema simpatico
Attivazione esagerata del sistema simpatico: riduce la dilatazione arteriolare portando
a una ridotta perfusione del muscolo.
Riposo a letto
PRO
• Aritmie
• Scompenso refrattario
• ischemia
CONTRO
• decondizionamento
• riduzione della mobilità
• depressione dell’umore
• Atrofia muscolare
• Ulcere da decubito
• Atelettasie polmonari
• Demineralizzazione ossea
• invecchiamento
La riduzione della VO 2max dopo 40 anni di vita (da 20 a
60) era comparabile a quella dopo 3 settimane di riposo
a letto all’età di 20 anni !
Journal of Gerontology: 2009. Vol. 64A, No. 2, 293–299
Mobilizzazione precoce vuole dire iniziare la mobilizzazione
quando il paziente:
•
•
•
•
•
•
è completamente autonomo
non necessita di supplemento di O2
non necessita di terapia infusionale
è emodinamicamente stabile
è in grado di collaborare
necessita di livelli di O2 accettabili
X
What Are the Barriers to Mobilizing
Intensive Care Patients?
• Audit prospettico di 4 settimane
• Pazienti mobilizzati in 176 (54%) di 327 giorni paziente.
• Eventi avversi: 2 /176 mobilizzazioni (1.1%)
MANCANZA DI RISORSE
Cause di non mobilizzazione:
• Device con accesso vascolare femorale
• Procedure (INFERMIERI; FISIOTERAPISTI)
• Agitazione o stato di coscienza alterato
• Instabilità emodinamica
Cardiopulmonary Physical Therapy Journal Vol 23 March 2012
Crescita culturale riguardo ai potenziali
benefici della mobilizzazione precoce e
impegno da parte delle figure professionali
coinvolte.
Mortalità
cardiovascolare
ospedalizzazione
per scompenso
Keteyian, J Am Coll Cardiol 2012;60:1899–905)
• Mitochondrial oxidative capacity is
• impaired due to decreased oxidative enzyme activity, mitochondrial
volume density and
• biogenesis, as well as increased reliance upon glucose rather than
fatty acid oxidation. There
• is a shift from fatigue-resistant type I fibers that primarily rely on
mitochondrial oxidative
• phosphorylation to generate ATP to type II fibers that have a higher
glycogen content and
• derive most of their energy from glycolysis. Additionally, skeletal
muscle in heart failure
• patients has decreased capillary density6, which correlates with
maximal VO2 and total
• exercise time7. Fiber atrophy and decreased muscle mass also
occur, and have been
• demonstrated to account for much of the variability in peak VO2.
• Endotheliumderived
• nitric oxide-mediated vasodilation is decreased in the
peripheral, coronary, and
• pulmonary circulations of patients with HF.14–16 The
inability of the peripheral vasculature
• to respond physiologically to variations in cardiac output,
peripheral blood flow and
• positional changes results in increased peripheral
vascular resistance and imbalance in blood
• pressure regulation in patients with advanced heart
failure.
•
•
•
•
•
•
•
•
•
•
Exercise training was shown to induce increased mitochondrial volume density as
well as a
shift from type II back to type I fibers.26
Insulin resistance, which is commonly seen even in nondiabetic patients with heart
failure,
has also been associated with reduced exercise capacity.28. One proposed
explanation for the
prevalence of insulin resistance has been functional resistance to adiponectin, an
insulinsensitizing
adipocytokine. Van Berendoncks et al. studied heart failure patients who
underwent 4 months of combined endurance and resistance exercise training and
found, at
baseline, a negative correlation between levels of adiponectin mRNA in skeletal
muscle and
VO2 peak and muscle strength, as well as a positive correlation between measures
of
exercise capacity and mRNA expression of the skeletal muscle receptor for
adiponectin,
There has long been evidence
that measures of cardiac function such as ejection fraction and cardiac output only poorly
correlate with a patient’s capacity to exercise, suggesting the involvement of factors other
than those impacting the central circulation. Furthermore, many studies of the effects of
exercise in patients with heart failure have failed to demonstrate improvements in cardiac
output, stroke volume, or ejection fraction, despite showing gains in exercise capacity
and
peak oxygen uptake (VO2),4 which has been validated as an excellent isolated predictor
of
• outcome in this population5. The lack of a close correlation between central
hemodynamicsand exercise tolerance has led to investigations into alterations in the
periphery, such as
• abnormalities in vascular endothelial function, hyperactivation of the sympathetic
nervous
• system, and changes in structure and oxidative capacity of skeletal muscle, which are
often
• seen in patients with heart failure
•
in skeletal muscle, hyperventilation is another consequence of the exaggerated EPR
during exercise, both of which accentu- ates the symptoms of exercise intolerance. It
is important to understand how the exaggerated EPR contributes to the exer- cise
intolerance in CHF patients. Furthermore, the exaggerated sympatho-excitation that
occurs during exercise also increases the risk of experiencing myocardial ischemia,
myocardial infarction, cardiac arrest, and/or stroke during or immediately after
exercise in these patients. As exercise intolerance and exaggerated sympathoexcitation are important clinical features in these patients, therapeutic inter- ventions
are largely aimed at improving these symptoms. A particular interest has recently
been directed toward the exagger- ated EPR in CHF (Piepoli et al., 1996, 1999; Khan
and Sinoway, 2000; Piepoli, 2006;Wang et al., 2010b, 2012). Once thought to be
contraindicated in patients with CHF, long-term regular exercise training (ExT for at
least 8 weeks) as a non-pharmacological treat- ment for CHF is now commonly
employed in these patients, and has been shown to increase the quality of life as well
as survival (Belardinelli et al., 1999; Piepoli et al., 2004; Smart and Marwick, 2004;
Jankowska et al., 2007; Wisloff et al., 2007; Flynn et al., 2009; O’Connor et al., 2009).
The beneficial effects of ExT include improved autonomic balance, reduced
neurohumoral activation, increase in exercise capacity and ameliorated myopathy in
CHF patients and animals (Pliquett et al., 2003; Roveda et al., 2003; Rondon et al.,
2006; Jankowska et al., 2007; Mueller, 2007b; Negrao and Middlekauff, 2008).
Adequate discussion of the ben- eficial effects of ExT in CHF is a large endeavor and
beyond the
ESERCIZIO FISICO E SCOMPENSO
CARDIACO (CHF)
Funzione
Autonoma
Funzione
metabolica
Funzione
muscolare
Funzione
endoteliale
Aumentata tollerabilità
all’esercizio fisico e
ridotta ventilazione
sottosforzo
Benessere
generale
Qualità
della vita
G.I.C.R.- IACPR
Coronary blood flow
Hambrecht R. et al. NEJM 2000;342:454
Exercise Training
in compensated stable CHF pts
• improves peripheral vascular, muscular and
metabolic function
• improves respiratory and autonomic function
• these effects lead to a significant
improvement in exercise tolerance and quality
of life
• no significant deterioration in central
hemodynamics
• attenuation of unfavorable LV remodeling
Il training fisico: effetti fisiologici
INCREMENTA:
• Il flusso muscolare
e l’estrazione di O2
• Il rilascio dell’ NO
• La capacità
aerobica
• La soglia ischemica
• La capacità
lavorativa
• Il colesterolo HDL
RIDUCE:
• Il VO2 miocardico
• La FC e la PA a riposo
e durante sforzo
• La produzione
muscolare di acido
lattico
• La trigliceridemia
• L’aggregabilità
piastrinica
• La produzione di
catecolamine
Dipartimento di
Scienze Cardiologiche
Caserta
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Result Filters
Display Settings:
Abstract
Send to:
Am J Med. 2004 May 15;116(10):682-92.
Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized
controlled trials.
Taylor RS, Brown A, Ebrahim S, Jolliffe J, Noorani H, Rees K, Skidmore B, Stone JA, Thompson DR, Oldridge N.
Source
Department of Epidemiology and Public Health, University of Birmingham, Birmingham, United Kingdom. [email protected]
Abstract
PURPOSE:
To review the effectiveness of exercise-based cardiac rehabilitation in patients with coronary heart disease.
METHODS:
A systematic review and meta-analysis of randomized controlled trials was undertaken. Databases such as MEDLINE, EMBASE, and the
Cochrane Library were searched up to March 2003. Trials with 6 or more months of follow-up were included if they assessed the effects
of exercise training alone or in combination with psychological or educational interventions.
RESULTS:
We included 48 trials with a total of 8940 patients. Compared with usual care, cardiac rehabilitation was associated with reduced all-cause
mortality (odds ratio [OR] = 0.80; 95% confidence interval [CI]: 0.68 to 0.93) and cardiac mortality (OR = 0.74; 95% CI: 0.61 to 0.96);
greater reductions in total cholesterol level (weighted mean difference, -0.37 mmol/L [-14.3 mg/dL]; 95% CI: -0.63 to -0.11 mmol/L [-24.3
to -4.2 mg/dL]), triglyceride level (weighted mean difference, -0.23 mmol/L [-20.4 mg/dL]; 95% CI: -0.39 to -0.07 mmol/L [-34.5 to -6.2
mg/dL]), and systolic blood pressure (weighted mean difference, -3.2 mm Hg; 95% CI: -5.4 to -0.9 mm Hg); and lower rates of selfreported smoking (OR = 0.64; 95% CI: 0.50 to 0.83). There were no significant differences in the rates of nonfatal myocardial infarction
and revascularization, and changes in high- and low-density lipoprotein cholesterol levels and diastolic pressure. Health-related quality of
life improved to similar levels with cardiac rehabilitation and usual care. The effect of cardiac rehabilitation on total mortality was
independent of coronary heart disease diagnosis, type of cardiac rehabilitation, dose of exercise intervention, length of follow-up, trial
quality, and trial publication date.
CONCLUSION:
This review confirms the benefits of exercise-based cardiac rehabilitation within the context of today's cardiovascular service provisi
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Crit Care Med. 2008 Aug;36(8):2238-43.
Early intensive care unit mobility therapy in the treatment of acute respiratory failure.
Morris PE, Goad A, Thompson C, Taylor K, Harry B, Passmore L, Ross A, Anderson L, Baker S,
Sanchez M, Penley L, Howard A, Dixon L, Leach S, Small R, Hite RD, Haponik E.
Source
Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University
School of Medicine, Winston Salem, NC, USA. [email protected]
Abstract
OBJECTIVE:
Immobilization and subsequent weakness are consequences of critical illness. Despite the
theoretical advantages of physical therapy to address this problem, it has not been shown that
physical therapy initiated in the intensive care unit offers benefit.
DESIGN AND SETTING:
Prospective cohort study in a university medical intensive care unit that assessed whether a
mobility protocol increased the proportion of intensive care unit patients receiving physical therapy
vs. usual care.
PATIENTS:
Medical intensive care unit patients with acute respiratory failure requiring mechanical ventilation
on admission: Protocol, n = 165; Usual Care, n = 165.
INTERVENTIONS:
An intensive care unit Mobility Team (critical care nurse, nursing assistant, physical therapist)
initiated the protocol within 48 hrs of mechanical ventilation.
MEASUREMENTS AND MAIN RESULTS:
The primary outcome was the proportion of patients receiving physical therapy in patients
surviving to hospital discharge. Baseline characteristics were similar between groups. Outcome
data are reflective of survivors. More Protocol patients received at least one physical therapy
session than did Usual Care (80% vs. 47%, p < or = .001). Protocol patients were out of bed
earlier (5 vs. 11 days, p < or = .001), had therapy initiated more frequently in the intensive care
unit (91% vs. 13%, p < or = .001), and had similar low complication rates compared with Usual
Care. For Protocol patients, intensive care unit length of stay was 5.5 vs. 6.9 days for Usual Care
(p = .025); hospital length of stay for Protocol patients was 11.2 vs. 14.5 days for Usual Care (p =
.006) (intensive care unit/hospital length of stay adjusted for body mass index, Acute Physiology
and Chronic Health Evaluation II, vasopressor). There were no untoward events during an
intensive care unit Mobility session and no cost difference (survivors + nonsurvivors) between the
•
•
•
•
•
•
•
Chest. 2011 Dec;140(6):1612-7.
Implementing early mobilization interventions in mechanically ventilated patients in the
ICU.
Schweickert WD, Kress JP.
Source
Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of
Pennsylvania, Philadelphia, PA, USA.
Abstract
As ICU survival continues to improve, clinicians are faced with short- and long-term
consequences of critical illness. Deconditioning and weakness have become common problems in
survivors of critical illness requiring mechanical ventilation. Recent literature, mostly from a
medical population of patients in the ICU, has challenged the patient care model of prolonged bed
rest. Instead, the feasibility, safety, and benefits of early mobilization of mechanically ventilated
ICU patients have been reported in recent publications. The benefits of early mobilization include
reductions in length of stay in the ICU and hospital as well as improvements in strength and
functional status. Such benefits can be accomplished with a remarkably acceptable patient safety
profile. The importance of interactions between mind and body are highlighted by these studies,
with improvements in patient awareness and reductions in ICU delirium being noted. Future
research to address the benefits of early mobilization in other patient populations is needed. In
addition, the potential for early mobilization to impact long-term outcomes in ICU survivors
requires further study.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Crit Care Med. 2007 Jan;35(1):139-45.
Early activity is feasible and safe in respiratory failure patients.
Bailey P, Thomsen GE, Spuhler VJ, Blair R, Jewkes J, Bezdjian L, Veale K, Rodriquez L, Hopkins RO.
Source
Department of Medicine, Pulmonary and Critical Care Division, LDS Hospital, Salt Lake City, UT, USA.
Abstract
OBJECTIVE:
To determine whether early activity is feasible and safe in respiratory failure patients.
DESIGN:
Prospective cohort study.
SETTING:
From June 1, 2003, through December 31, 2003, we assessed safety and feasibility of early activity in all
consecutive respiratory failure patients who required mechanical ventilation for >4 days admitted to our respiratory
intensive care unit (RICU). A majority of patients were treated in another intensive care unit (ICU) before RICU
admission. We excluded patients who required mechanical ventilation for < or =4 days.
PATIENTS:
Eight-bed RICU at LDS Hospital.
INTERVENTIONS:
We assessed patients for early activity as part of routine respiratory ICU care. We prospectively recorded activity
events and adverse events. We defined three activity events as sit on bed, sit in chair, and ambulate. We defined
six activity-related adverse events as fall to knees, tube removal, systolic blood pressure >200 mm Hg, systolic
blood pressure <90 mm Hg, oxygen desaturation <80%, and extubation.
MEASUREMENTS AND MAIN RESULTS:
During the study period, we conducted a total of 1,449 activity events in 103 patients. The activity events included
233 (16%) sit on bed, 454 (31%) sit in chair, and 762 (53%) ambulate. In patients with an endotracheal tube in
place, there were a total of 593 activity events, of which 249 (42%) were ambulation. There were <1% activityrelated adverse events, including fall to the knees without injury, feeding tube removal, systolic blood pressure
>200 mm Hg, systolic blood pressure <90 mm Hg, and desaturation <80%. No patient was extubated during
activity.
CONCLUSIONS:
We conclude that early activity is feasible and safe in respiratory failure patients. A majority of survivors (69%)
were able to ambulate >100 feet at RICU discharge. Early activity is a candidate therapy to prevent or treat the
neuromuscular complications of critical illness.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Crit Care Resusc. 2009 Dec;11(4):290-300.
Should we mobilise critically ill patients? A review.
O'Connor ED, Walsham J.
Source
St Columcille's Hospital, Loughlinstown, County Dublin, Ireland. [email protected]
Abstract
BACKGROUND:
Neuromuscular weakness, a frequent complication of prolonged bed rest and critical illness, is associated with
morbidity and mortality. Mobilisation physiotherapy has widespread application in patients hospitalised with noncritical illness.
OBJECTIVES:
We reviewed the literature to evaluate the worldwide availability of mobilisation therapy in intensive care units and
the role of mobilisation therapy in patients requiring medical or surgical high dependency or intensive care.
METHODS:
We searched PubMed (1980 to August 2009) using the MeSH terms "physiotherapy" and "intensive care".
Additional keyword search terms, "mobilisation", "mobilization", and "fast-track", were used. In addition, we
examined reference lists in recent studies and reviews.
RESULTS:
Routine mobilisation physiotherapy is least likely to be available in ICUs in the United States. Early mobilisation is
appropriate for patients with pulmonary thromboembolic disease, community-acquired pneumonia and in elderly
hospitalised patients. Although fast-track cardiac and noncardiac surgery with early ambulation is safe and
reduces hospital length of stay, it does not alter postoperative mortality. Up to 25% of patients can be safely
mobilised within 72 hours of ICU admission. This therapy may reduce hospital and ICU length of stay, shorten
duration of mechanical ventilation, and improve muscle strength and functional independence scores. Pooled data
show a nonsignificant mortality benefit in favour of early mobilisation (odds ratio, 0.77; 95% CI, 0.49-1.21).
CONCLUSIONS:
The data in support of mobilisation therapy for perioperative and critically ill patients, while of a low level of
evidence, are substantial. This justifies a paradigm shift in attitudes towards physiotherapy and the prevention of
critical illness weakness.
AMERICAN JOURNAL OF CRITICAL CARE, May 2009, Volume 18, No. 3
•
•
•
•
•
•
•
•
•
•
•
•
heavy sedation, especially when they are mechanically
ventilated [75]. Continuous sedative infusions are widely
used [76] and associated with increased duration of
mechanical ventilation [77]. Heavy sedation prevents patients
from participating in mobility activities. Daily interruption of
sedation infusions can result in decreased duration of
mechanical ventilation (4.9 days versus 7.9 days; P = 0.004)
and ICU length of stay (6.4 days versus 9.9 days; P = 0.02)
[78]. Use of lighter sedation also is potentially associated
with decreased long-term psychologic disturbances such as
post-traumatic stress [79]. Combined early mobility and
decreased sedation may have synergistic benefits.
• Patients undergoing uncomplicated
successful reperfusion therapy should be
kept in the coronary care unit for a
• minimum of 24 h, after which they may be
moved to a step-down monitored bed for
another 24–48 h.
Bench-to-bedside review: Mobilizing patients in the intensive
care unit – from pathophysiology to clinical trials
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Pathophysiologically important mechanisms
for weakness include immobility, as well as local and
systemic inflammation, which act synergistically to promote
significant muscle loss in the critically ill patient. prolonged bed rest
associated with critical illness leads to
decreased muscle protein synthesis, increased urinary
nitrogen excretion (indicating muscle catabolism), and
decreased muscle mass, especially in the lower extremities
[14]. These changes lead to deleterious effects on muscle
weakness, with 1% to 1.5% of quadriceps muscle strength
lost for each day of bed rest in healthy individuals [15,16].
Both preclinical and clinical studies suggest a more profound
effect of immobilization in the elderly, with a greater loss of
lean body mass [14,17]. Additionally, the interaction of bed
rest and critical illness appears to result in more significant
muscle loss than bed rest alone [18-21].
• Bed rest, and its associated mechanisms, may play an important
role in the pathogenesis of neuromuscular weakness in critically ill
patients. A new approach for managing mechanically ventilated
patients includes reducing deep sedation and increasing
rehabilitation therapy and mobilization soon after admission to the
intensive care unit.
•
•
•
•
•
•
•
•
ICU patients with sepsis, multiorgan
failure, or prolonged mechanical
ventilation, neuromuscular dysfunction
was identified in 655 of 1421 patients
(46%) and was associated with
prolonged duration of mechanical ventilation
and length of ICU and hospital
stay. One
Costo energetico di alcune attività
in MET (1 MET = 3.5 ml O2/kg/min)
Posizione supina
1.1
Lavarsi viso e mani
2.5
Mangiare
1.4
Scrivere, leggere
1.8
Seduto in poltrona
1.2
Uso della comoda
2.0
Ortostatismo
1.2
Giannuzzi, Ignone.
Riabilitazione nelle malattie cardiovascolari.
UTET 1999