POTENZIOMETRIA

Download Report

Transcript POTENZIOMETRIA

TECNICHE ELETTROANALITICHE

I metodi elettrochimici si basano sulla misura della risposta elettrica ottenuta dal campione quando viene inserito in una cella elettrochimica (costituita da conduttori di I e di II specie).

Nei conduttori di I specie (metalli, semiconduttori), il passaggio di corrente avviene mediante flusso fondamentale è la I legge di Ohm: di elettroni. La legge

V = i R

V = ddp applicata R = resistenza elettrica i = intensità di corrente Nei conduttori di II specie (sali fusi, soluzioni elettrolitiche e alcuni solidi ionici), il passaggio di corrente avviene per spostamento di ioni

In elettrochimica, i parametri che possono essere misurati sono:

    E, cioè la differenza di potenziale (ddp) che di stabilisce tra due elettrodi immersi nella soluzione di misura, in potenziometria.

Q, la quantità di carica elettrica che si ottiene applicando una ddp a due elettrodi, in coulombometria o in elettrogravimetria. i, l’intensità di corrente che passa tra gli elettrodi immersi nella soluzione al variare del potenziale applicato ad uno di essi, in voltammetria.

R o

 , resistenza o conducibilità in conduttimetria

POTENZIOMETRIA

I metodi potenziometrici sono metodi di analisi basati sulla misura della forza elettromotrice (f.e.m.) di una cella galvanica.

La cella galvanica è un dispositivo atto a convertire l’energia chimica di una reazione di ossido-riduzione in energia elettrica.

Es.: 2 Ag + + Cu (s) = 2 Ag (s) + Cu 2+ riduzione: ossidazione: Ag + + 1e = Ag ° Cu ° = Cu 2+ + 2e -

Una reazione di ossido-riduzione può essere realizzata:

a) per via chimica

i due reagenti vengono messi in contatto diretto  si ha trasferimento diretto di elettroni da una specie chimica ad un’ altra Cu + 2Ag + = Cu 2+ + 2Ag Il rame passa in soluzione come Cu 2+ , mentre gli ioni Ag + rame come argento metallico.

si depositano sul

b) per via elettrochimica

i due reagenti non vengono messi a contatto diretto; le due reazioni Cu = Cu 2+ + 2e Ag + + e = Ag vengono fatte avvenire in una

cella

elettrochimica, cioè in un sistema che non consente il contatto diretto tra i reagenti.

Ag Zn 2+ V Setto poroso Ag+ Cu 2+ Cu Cu 2+

Le celle elettrochimiche possono essere: • galvaniche (o voltaiche), ovvero spontanee • elettrolitiche, ovvero non spontanee La differenza di potenziale ai capi dei due elettrodi, misurata mediante un voltmetro inserito nel circuito esterno, è la manifestazione della tendenza della reazione netta di cella a raggiungere l’equilibrio.

A g Z n 2 + V Setto poroso C u C u 2 + A g + C u 2 +

Rappresentazione schematica della cella:

anodo catodo Cu

CuSO 4 (0.02 M)



AgNO 3 (0.02 M)

Ag cambiamento di fase ponte salino

anodo: elettrodo dove avviene l’ossidazione catodo: elettrodo dove avviene la riduzione

Cella galvanica Cella elettrolitica Cella reversibile:

invertendo la direzione della corrente, la direzione della reazione chimica è anche invertita

Corrente in una cella galvanica

La diversa mobilità degli ioni genera una differenza a contatto di potenziale (ddp) ogni volta che si pongono due soluzioni Questa differenza di potenziale è quella chiamata

potenziale di giunzione

Pile di concentrazione

Processo di diluizione di una soluzione

C 1

>

C 2

Cu 2+ (aq,

C 1

)  Cu 2+ (aq,

C 2

) Cu 2+ + 2e  Cu

E

=

E °

Cu 2+ /Cu R T

2

F

ln

1 [Cu 2+ ] =

E °

Cu 2+ /C u + R T

2

F

ln

[Cu 2+ ] Maggiore è [Cu 2+ ] maggiore è

E

anodo.

° .

Il primo semielemento funziona da catodo e il secondo da (-) Cu| Cu 2+ (aq,

C 1

) | | Cu 2+ (aq,

C 2

) | Cu (+)

E

=

E C

-

E A

= 0,0591 2 Log

C C 1 2

Gli

E

° elidono essendo uguali si

La soluzione più concentrata si diluisce mentre quella più diluita si concentra. Quando

C 1

=

C 2 E °

= 0, la cella è scarica

Elettrochimica

,

La serie elettrochimica dei potenziali standard

Con l’assunzione del riferimento per l’ESI si può determinare il

potenziale standard

la

f.e.m

di un qualsiasi semielemento costituito da una coppia Oss/Rid, accoppiando l’ESI con il semielemento, in condizioni standard e misurando . della pila così ottenuta.

Pt  H 2 (g, P =1 atm)  H 3 O + (aq, 1 M)  ZnSO 4 (aq, 1M)  Zn

E °

cella =0.763 V Il polo negativo (anodo) è l’elettrodo di zinco 

E °

Zn2+/Zn = -0.763 V

potenziale standard del semielemento a zinco

Pt  H 2 (g, P =1 atm)  H 3 O + (aq, 1M)  CuSO 4 (aq, 1M)  Cu

E °

cella =0.337 V Il polo positivo (catodo) è l’elettrodo di rame 

E °

Cu2+/Cu = +0.337 V

potenziale standard del semielemento a rame

La serie elettrochimica dei potenziali standard

• I valori sono tabulati come potenziali standard di riduzione ; ogni semireazione elettrodica è riportata come riduzione • Il potenziale standard di riduzione di una certa coppia redox indica la capacità di questa coppia a comportarsi da ossidante o da riducente rispetto alla coppia H 3 O + /H 2 • Lo stesso criterio può essere facilmente esteso a qualsiasi altra coppia redox, confrontando i relativi potenziali standard • Calcolo immediato della

f.e.m

. standard (

E

° ) di una cella formata da due semielementi qualsiasi (-) Zn  Zn 2+ (aq, 1M)  Cu 2+ (aq, 1 M)  Cu (+) E ° = E ° C -E ° A = E ° Cu2+/Cu -E ° Zn2+/Zn = +0.337 - (-0.763) = +1.100 V

Potenziale di una cella galvanica E cella = E catodo - E anodo + E giunzione

Il potenziale di ogni l’equazione di Nernst semicella può essere calcolato tramite

E

=

E



nF a ox rid

R = costante generale dei gas (R = 8.314 J/ mol K) T = temperatura espressa in °K n = numero di elettroni scambiati nelle reazione redox F = faraday (96500 Coulomb) a = attività della specie E° = potenziale nelle condizioni standard (nelle condizioni cioè in cui l’attività è unitaria) Riunendo i termini noti (a T = 25 ° C):

E

=

E



0.

91log a ox a rid Per convenzione il potenziale elettrodico è un potenziale di riduzione: si riferisce cioè al processo scritto come riduzione

Il potenziale elettrodico standard

Il potenziale elettrodico standard (E tutti i prodotti sono unitarie.

° ) di una semi-reazione e’ definito come il potenziale della semicella quando le attivita’ di tutti i reagenti e di Poiche’ E ° non può essere determinato in valore assoluto, sperimentalmente E ° può essere definito come la forza elettromotrice di una cella ottenuta accoppiando l’elettrodo in esame nelle condizioni standard con l’elettrodo standard ad idrogeno (SHE), al quale per convenzione e’ stato assegnato un valore di potenziale pari a 0.000 V.

reazione elettrodica: per convenzione: 2 H + + 2 e = H 2 (g) E 0H+/H2 = 0.000 V

E’ un elettrodo reversibile: può agire sia da catodo che da anodo

POTENZIOMETRIA

MISURE POTENZIOMETRICHE

Possiamo distinguere due tipi di misure potenziometriche: (a) (b) Misure in cui ci interessa la variazione del potenziale indicatore (es. costruzione di una curva di titolazione) dell’elettrodo Misure in cui ci interessa il valore effettivo del potenziale indicatore (es. misure di pH o della concentrazione di uno ione).

dell’elettrodo Nel caso conoscere il potenziale reale dell’elettrodo indicatore, ma soltanto la (a) sua non importa variazione.

L’unico accorgimento è quello di assicurarsi che il potenziale dell’elettrodo di riferimento sia effettivamente costante.

mV Diverso elettrodo di riferimento, ma stessa informazione analitica (il punto di massima pendenza)

POTENZIOMETRIA

MISURE POTENZIOMETRICHE

Nel caso (b) per conoscere la concentrazione Nernst) dell’analita (attraverso la legge di è necessario conoscere il potenziale effettivo dell’elettrodo indicatore. In questo caso si può determinare sperimentalmente il potenziale dell’elettrodo di riferimento nelle condizioni di misura, sostituendo all’elettrodo indicatore un elettrodo a potenziale noto oppure, più comunemente, effettuare una calibrazione del sistema di misura con soluzioni a concentrazione nota di analita: mV Misura del campione Misure delle soluzioni standard [A] x Log[A]

POTENZIOMETRIA

POTENZIALE DI GIUNZIONE

Il

potenziale di giunzione

è una piccola differenza di potenziale (tipicamente pochi mV) che si produce ogni volta che vengono a contatto soluzioni a differente composizione, come all’estremità di un ponte salino o in corrispondenza del setto poroso di un elettrodo.

Poiché il valore del potenziale di giunzione non è noto con precisione, esso

pone un limite all’accuratezza

delle misure potenziometriche dirette.

Il potenziale di giunzione esempio, è originato dalla diversa

mobilità

degli ioni. Ad all’interfase fra una soluzione contenente NaCl ed acqua si crea una regione anteriore con un eccesso di carica negativa, ricca di ioni Cl , seguita da una regione carica positivamente, impoverita di ioni Cl . Questo perchè lo ione Cl ha una mobilità maggiore dello ione Na + . Il risultato è una differenza di potenziale elettrico che contribuisce al potenziale complessivo della cella elettrochimica.

Soluzione di NaCl Na + Cl Acqua Zona ricca di Na + + + E j Zona ricca di Cl -

POTENZIOMETRIA

POTENZIALE DI GIUNZIONE

Il potenziale di giunzione può essere ridotto utilizzando nel ponte salino un elettrolita ad elevata concentrazione e nel quale catione ed anione hanno approssimativamente la

stessa mobilità

(KCl è spesso utilizzato nei ponti salini appunto perché K + e Cl hanno circa la stessa mobilità).

ELETTRODI: CLASSIFICAZIONE

• • • Gli elettrodi sono classificabili come: • elettrodi di riferimento elettrodi di I

a

e II

a

specie, elettrodi di ossidoriduzione, elettrodi a membrana

POTENZIOMETRIA

ELETTRODO DI RIFERIMENTO AD Ag/AgCl

Un elettrodo di riferimento dovrebbe possedere un

potenziale noto e costante

, in particolare indipendente dalla composizione della soluzione da analizzare.

L’elettrodo ad

argento/cloruro d’argento

è costituito da un elettrodo di argento rivestito di AgCl ed immerso in una soluzione acquosa satura di KCl e AgCl.

Filo di argento Rivestimento di AgCl(s) Nell’elettrodo avviene la semireazione AgCl ( s )  e  E  =   0 , 222 V Ag ( s )  Cl  ( aq ) Soluzione acquosa saturata con KCl ed AgCl ed il suo potenziale è dato dalla E = E   0 , 0592 log[ Cl  ] Setto poroso KCl ed AgCl solidi Il potenziale argento/cloruro di un elettrodo ad d’argento contenente una soluzione satura di KCl è pari a +0,197V rispetto all’elettrodo standard ad idrogeno.

POTENZIOMETRIA

ELETTRODO DI RIFERIMENTO AD Ag/AgCl

L’elettrolita contenuto nell’elettrodo non deve Ag + venire a contatto con soluzioni contenenti reagenti che precipitano lo ione formando sali meno solubili di AgCl (es.

Br , I , S portare 2 ) o proteine (anch’esse formano precipitati insolubili). Questo potrebbe infatti all’ostruzione del setto poroso.

Anche gli agenti complessanti (CN , SCN ) modificano il comportamento dell’elettrodo.

Questo problema un elettrodo a può venire evitato usando

doppia giunzione

, nel quale una camera contenente una soluzione elettrolitica impedisce il contatto diretto fra la soluzione interna seconda dell’elettrodo e la soluzione in esame.

L’elettrolita contenuto lentamente in questa verso camera fluisce l’esterno, impedendo l’ostruzione del setto poroso.

Elettrodo ad Ag/AgCl Setto poroso Soluzione elettrolitica

POTENZIOMETRIA

ELETTRODO DI RIFERIMENTO A CALOMELANO

L’elettrodo a

(SCE) calomelano saturo

consiste in un filo di platino immerso in mercurio liquido, a sua volta a contatto con una pasta di mercurio liquido, calomelano (Hg 2 Cl 2 ) e KCl immersa in una soluzione satura di KCl ed Hg 2 Cl 2 .

Nell’elettrodo avviene la semireazione Setto poroso Hg 2 Cl 2 ( s )  2 e   2 Hg ( l )  2 Cl  ( aq ) E  =  0 , 26 8 V ed il suo potenziale è dato dalla Hg(l) Hg(l), Hg 2 Cl 2 (s), KCl(s) E = E   0 , 0592 2 log[ Cl  ] 2 Il potenziale dell’elettrodo a calomelano saturo rispetto è pari a +0,241V all’elettrodo standard ad idrogeno.

KCl solido Filo di platino Soluzione acquosa saturata con KCl ed Hg 2 Cl 2 Setto poroso

POTENZIOMETRIA

ELETTRODI INDICATORI

Un elettrodo indicatore deve rispondere in modo

rapido e riproducibile

alle variazioni di concentrazione di un analita o di un gruppo di analiti. Un elettrodo indicatore dovrebbe inoltre essere

specifico

per l’analita in oggetto, od almeno dotato di una elevata

selettività

.

Elettrodi indicatori metallici Elettrodi ionoselettivi a membrana Transistor ad effetto di campo ionoselettivi Elettrodi di prima specie Elettrodi di seconda specie Elettrodi redox inerti

POTENZIOMETRIA

ELETTRODI DI PRIMA SPECIE

Un elettrodo indicatore di

prima specie

metallo M ed il suo catione M n+ è costituito da un elettrodo di metallo puro immerso in una soluzione contenente un suo catione. Se può essere scritto come l’equilibrio fra il M n  ( aq )  ne   M ( s ) il potenziale dell’elettrodo indicatore E ind vale E ind = E o M n  / M  0 , 0592 log n 1 a M n  = E o M n  / M  0 , 0592 log n a M n  dove a M n+ è l’attività dello ione nella soluzione (o, in prima approssimazione, la sua concentrazione molare [M n+ ]). Spesso il potenziale dell’elettrodo viene espresso in termini della funzione p dello ione (pM = -logM). In tal caso si ha: E ind = E o M n  / M  0 , 0592 log n a M n  = E o M n  / M  0 , 059 2 n pM

POTENZIOMETRIA

ELETTRODI DI SECONDA SPECIE

I metalli non solo servono come elettrodi indicatori per il loro rispettivo catione, ma possono essere utilizzati anche per misurare l’attività di anioni che formano precipitati poco solubili o complessi stabili con questo catione (elettrodo indicatore di

seconda specie

).

Se un metallo M forma un sale poco solubile MX n con un anione monovalente, in una soluzione saturata con MX n metallico il potenziale di un elettrodo dipenderà dall’attività dell’anione X . Sulla base della seguente reazione elettrodica MX n ( s )  ne   M ( s )  nX  ( aq ) Il potenziale dell’elettrodo indicatore può essere scritto nella forma E ind = E o MX n / M  0 , 0592 log n a n X  = E o MX n / M  0 , 0592 log a X  Se la concentrazione dello ione X viene espressa sotto forma di pX si ha E ind = E o MX n / M  0 , 0592 log a X  = E o MX n / M  0 , 0592 pX

POTENZIOMETRIA

ELETTRODI DI TERZA SPECIE

Un

conduttore inerte

(costituito solitamente da un elettrodo di Pt, Pd, Au o carbone) immerso in una soluzione è in grado di rilevare il potenziale di un sistema redox contenuto nella soluzione stessa.

Se nel sistema si verifica la seguente reazione di ossidoriduzione Ox ( aq )  ne   Re d ( aq ) il potenziale di un elettrodo inerte immerso nella soluzione dall’espressione è dato E ind = E o Ox / Re d  0 , 0592 n log a a Re Ox d

POTENZIOMETRIA

ELETTRODI IONOSELETTIVI A MEMBRANA

Un elettrodo ionoselettivo a membrana risponde selettivamente ad una specie in soluzione ed è costituito da un elettrodo interno immerso in una soluzione contenente lo ione in esame ad una attività definita e costante e da una

membrana ionoselettiva

in grado di legare selettivamente lo ione in esame.

All’equilibrio, la differenza di potenziale attraverso la membrana dipende dalla

differenza di attività

dello ione fra la soluzione interna all’elettrodo ed il campione in esame.

Elettrodo interno Soluzione interna ad attività a 2 Membrana ionoselettiva Soluzione esterna ad attività a 1 In generale, la differenza di potenziale attraverso la membrana attività dello ione all’interno dell’elettrodo (a 2 ) ed all’esterno (a 1 è legata alle ) dalla relazione E b = 0 , 05916 n a log a 1 2 dove n è la carica dello ione. L’equazione è analoga all’equazione di Nernst, ma in questo caso

non è implicata alcuna reazione di ossidoriduzione

.

Elettrodi a membrana o iono-selettivi (ISE)

Tipi di elettrodi ISE:

   elettrodi a membrana di vetro elettrodi a membrana liquida elettrodi a membrana cristallina

Requisiti fondamentali degli elettrodi ISE

Un elettrodo ISE deve essere:        Disponibile commercialmente e di facile costruzione Facilmente maneggiabile Robusto e con scarsa tendenza all’avvelenamento Avere buona riproducibilità e sufficiente range di validità Specifico Avere un tempo di risposta accettabile Risposta nernstiana

POTENZIOMETRIA

ELETTRODI IONOSELETTIVI A MEMBRANA

Le membrane degli elettrodi ionoselettivi possono essere costituiti da diversi materiali, sia solidi (vetro, polimeri, cristalli inorganici) che liquidi (in genere solventi idrofobi).

Elettrodi a membrana di vetro Elettrodi a membrana solida Elettrodi a membrana liquida Scambiatore ionico in un solvente idrofobo Elettrodi a membrana cristallina Membrana monocristallina Membrana policristallina Elettrodi a membrana polimerica Scambiatore ionico in una matrice polimerica Elettrodi composti Sono in effetti celle elettrochimiche, in quanto composte da due elettrodi, che rispondono a determinate specie chimiche

POTENZIOMETRIA

ELETTRODO A VETRO

L’elettrodo a vetro

rappresenta per la misura del pH l’elettrodo ionoselettivo di più vasto impiego.

Esso consiste in una sottile membrana di

vetro

speciale,

che è l’elemento dell’elettrodo effettivamente sensibile al pH, saldata all’estremità di un tubo resistente in plastica o vetro. Nel tubo soluzione con è contenuta una attività nota e costante di ione H + (una soluzione diluita di HCl oppure un tampone) saturata con AgCl. Un filo di argento rivestito di AgCl immerso nella soluzione forma un elettrodo di riferimento ad Ag/AgCl, collegare che viene utilizzato per l’elettrodo ad uno dei terminali del potenziometro.

Filo di argento Rivestimento di AgCl(s) Soluzione ad attività nota di ione H + , saturata con AgCl Membrana di vetro

POTENZIOMETRIA

ELETTRODO A VETRO

Il vetro silicato usato per le membrane è costituito da un insieme infinito tridimensionale di tetraedri SiO 4 4 , in cui ogni atomo di ossigeno è condiviso fra due atomi di silicio. Le cariche negative sono bilanciate da cationi (es.

Na + e Li + ) che sono contenuti negli interstizi del reticolo. La membrana di vetro risponde al pH in quanto è in grado di scambiare ioni H + con le soluzioni con cui è a contatto. Per fare ciò il vetro deve essere

idratato

.

In questo processo i cationi Na + scambiati con gli ioni H + della soluzione con la formazione di uno strato superficiale di “gel” contenente esclusivamente gruppi negativi O liberi oppure legati a ioni H + e Li + vengono (in soluzioni fortemente alcaline si possono avere anche legami rilevanti con altri cationi come Na + ).

POTENZIOMETRIA

ELETTRODO A VETRO

Gel idratato (~ 10 nm, siti occupati da H + ) H + HO O Vetro secco (siti occupati da Na + ) Gel idratato (~ 10 nm, siti occupati da H + ) OH O H + E b ~ 0,1 mm A contatto con una soluzione contenente ioni H + si instaura un equilibrio fra i gruppi OH ed O , ed a seguito di queste reazioni i due strati di gel idratato (quello interno e quello esterno) si caricano negativamente, con una carica determinata dalla concentrazione di ioni idrogeno delle soluzioni con cui sono a contatto.

HO  vetro  H  ( aq )  O   vetro Il potenziale di membrana originato dipende quindi dalla concentrazione (o meglio dall’attività) dello ione H + nelle due soluzioni: E b = 0 , 05916 a ( H  log a ( H  ) ) 2 1 In questo caso a(H + ) 1 è relativo alla soluzione esterna, mentre a(H + ) 2 è relativo a quella interna

POTENZIOMETRIA

ELETTRODO A VETRO

Il potenziale di una elettrodo a vetro contiene vari contributi, ma soltanto il potenziale di membrana (E b )

è funzione del pH

particolare, esistono almeno tre contributi: il della soluzione in esame. In

potenziale di membrana

E b , il

potenziale dell’elettrodo di riferimento interno ad Ag/AgCl

e il

potenziale di asimmetria

E asimm : E v etro =  0 E , v etro   =  05916 E  b   log a a E  ( ( Ag H H   / ) AgCl  ) 2 1   E E Ag / asimm AgCl  E asimm Raccogliendo i termini non dipendenti soluzione esterna si ottiene l’espressione E v etro = ( 0 , 05916 1 log a ( H  ) 2 dall’attività dello ione idrogeno nella  E Ag / AgCl  E asimm )  0 , 05916 log a ( H  ) 1 = L  0 , 05916 log a ( H  ) 1 = L  0 , 05916 pH • L’introduzione del

potenziale di asimmetria

genere il potenziale di membrana non (E asimm ) deriva dalla osservazione sperimentale che in è nullo quando a 1 = a 2 . Tale potenziale è in effetti determinato dalla non perfetta equivalenza delle due superfici della membrana.

• Siccome per un elettrodo a vetro a 2 è mantenuta costante, 0,05916 log a 2 nella costante L.

può essere inglobato

POTENZIOMETRIA

ELETTRODO A VETRO COMBINATO

Una

cella

per la misura del pH consiste perciò in un elettrodo a vetro ed un elettrodo di riferimento immersi nella soluzione di cui si vuole misurare il pH.

Per praticità, essi vengono in genere inclusi in un unico dispositivo (

elettrodo a vetro combinato

), che in quanto contiene sia realtà è una cella elettrochimica vera e propria in l’elettrodo a vetro che l’elettrodo di riferimento esterno.

Filo di argento Rivestimento di AgCl(s) Soluzione saturata con KCl ed AgCl Setto poroso KCl ed AgCl solidi

elettrodo di riferimento esterno

Filo di argento Rivestimento di AgCl(s) Soluzione ad attività nota di ione H + , saturata con AgCl Membrana di vetro

elettrodo a vetro

L’elettrodo a vetro combinato contiene due elettrodi di riferimento, uno esterno ed uno interno all’elettrodo a vetro

POTENZIOMETRIA

ELETTRODO A VETRO

E’ da notare che il parametro L in realtà non è costante ma quanto il potenziale di asimmetria dipende dalle condizioni

varia nel tempo

, in dell’elettrodo. Per eliminare l’errore nella misura del pH gli elettrodi a vetro vanno calibrati utilizzando uno o rientri più standard a pH noto, scelti in modo che il pH del campione nell’intervallo dei valori di pH degli standard (gli standard commerciali sono di solito soluzioni a pH 4, 7 e 10).

POTENZIOMETRIA

TARATURA DI UN ELETTRODO A VETRO

Un elettrodo a vetro viene tarato (la procedura è in genere svolta automaticamente) utilizzando due soluzioni standard a pH noto, scelte in modo che il pH da misurare

sia compreso fra di esse.

La curva di calibrazione è lineare, quindi il pH della soluzione incognita si ottiene per semplice interpolazione (anch’essa in genere effettuata automaticamente).

Potenziale soluzione incognita Standard 1 (es. pH = 4) Standard 2 (es. pH = 7) pH soluzione incognita pH

Nonostante la misurazione del pH sia forse la più comune in campo chimico, essa è soggetta a numerosi tipi di limitazioni.

L'errore alcalino. L'elettrodo a vetro ordinario diventa sensibile agli ioni di metalli alcalini e dà letture basse a valori di pH maggiori di 9.

L'errore acido. I valori registrati dall'elettrodo a vetro tendono ad essere un po' alti quando il pH è inferiore a circa 0.5.

La disidratazione. Una membrana disidratata può provocare una irregolare prestazione dell'elettrodo.

La forza ionica insufficiente. Si è trovato che errori significativi (di 1 o 2 unità di pH) possono verificarsi quando il pH di campioni a bassa forza ionica, come l'acqua di lago o di torrente, viene misurato con un sistema di elettrodi vetro/calomelano. È stato dimostrato che la fonte primaria di tali errori è l’irriproducibilità dei potenziali di giunzione.

Il pH dei tamponi standard. Qualsiasi imprecisione nella preparazione del tampone usato per la calibrazione o qualsiasi cambiamento nella sua composizione durante la conservazione provoca un errore nelle successive misure del pH. L'azione dei batteri sui componenti di un tampone organico costituisce una comune causa di deterioramento.

POTENZIOMETRIA

ELETTRODO A VETRO

• La precisione e l’accuratezza della misura di pH non possono comunque essere maggiori di quelle con le quali sono noti i pH degli standard usati per la taratura (tipicamente  0,01 unità di pH) • L’accuratezza della misura è limitata dalla presenza dei potenziali di giunzione: se la composizione ionica dell’analita è diversa da quella degli standard il potenziale di giunzione varierà. Questo determina una incertezza aggiuntiva nella misura pari ad almeno 0,01 unità di pH • In soluzioni fortemente basiche ad elevata concentrazione di ioni Na + l’elettrodo risponde anche allo ione sodio, dando un valore apparente di pH inferiore a quello reale (

errore alcalino

) • Per ragioni non completamente chiarite, in soluzioni molto acide il pH misurato è superiore a quello reale (

errore acido

) • Il raggiungimento dell’equilibrio fra la membrana di vetro e la soluzione non è istantaneo: il tempo richiesto può variare da pochi secondi per soluzioni ben tamponate ad alcuni muniti per soluzioni con bassa forza ionica • Gli elettrodi non conservati in acqua si disidratano e richiedono alcune ore di immersione prima di rispondere correttamente allo ione H + • La taratura dell’elettrodo deve essere eseguita alla stessa temperatura alla quale si effettua la misura del pH

POTENZIOMETRIA

ELETTRODO A VETRO

pH<0 pH>10 0 pH In soluzioni basiche un elettrodo a vetro è sensibile sia alla concentrazione dello ione idrogeno che a quella degli ioni dei metalli alcalini (

errore alcalino

). Questo errore può essere spiegato assumendo l’esistenza di un equilibrio di scambio fra lo ione idrogeno sul vetro ed i cationi in soluzione: HO  vetro  Na  ( aq )  NaO  vetro  H  ( s ) In genere questo fenomeno non è un problema (i vetri utilizzati legano molto poco i cationi alcalini). In soluzioni fortemente basiche il rapporto [Na + ]/[H + ] è però talmente elevato (es. 10 14 per una soluzione di NaOH 1,00 M) che lo ione Na + viene legato in modo paragonabile ad H + , determinando quindi un errore nella misura del pH.

TITOLAZIONI POTENZIOMETRICHE

Le titolazioni potenziometriche sono eseguite misurando il potenziale di un elettrodo reversibile ad un certo analita durante la sua titolazione con un opportuno reagente. Si può quindi costruire direttamente la curva Potenziale/Volume di titolante.

Le titolazioni potenziometriche forniscono dati più attendibili di quelli forniti dalle titolazioni che usano indicatori chimici, e sono inevitabili insospettate.

quando si devono eseguire in soluzioni colorate o torbide e per ricercare la presenza di specie Queste titolazioni sono anche facilmente automatizzabili.

Le titolazioni potenziometriche manuali, d'altro canto, hanno lo svantaggio di essere più lunghe di quelle che coinvolgono gli indicatori.

43

Un titolatore automatico altro non è che una pompa, capace di erogare volumi controllati di liquido (titolante), accoppiata con un voltmetro elettronico che permette di misurare il potenziale di un elettrodo indicatore dopo ogni aggiunta automatica di titolante.

Nel caso di una titolazione acido base, l’elettrodo indicatore è un normale elettrodo a vetro, per una di precipitazione degli alogenuri si usa un elettrodo ad Ag/AgCl.

44

Il titolante viene aggiunto automaticamente in grandi incrementi all'inizio della titolazione ed in incrementi via via più piccoli quando ci si avvicina al punto finale (come indicato da maggiori cambiamenti nella risposta per unità di volume).

I metodi per determinare il punto finale di una titolazione potenziometrica sono diversi.

Il più semplice implica la costruzione del diagramma del potenziale in funzione del volume di reagente, come nella figura sotto a sinistra: il punto di mezzo del salto di potenziale viene stimato ad occhio e preso come punto finale.

Alternativamente si può calcolare (anche automaticamente) la derivata I al centro) o II a rilevazione del punto di arresto.

a (figura (figura a destra) della curva di titolazione, rendendo più precisa la 45

TITOLAZIONE POTENZIOMETRICA

Materiale occorrente 1- piaccametro (millivoltmetro) 2- elettrodo combinato 3- termometro 4- buretta 5- ancoretta magnetica 6- agitatore magnetico

Come eseguire una titolazione potenziometrica in pratica 1- La soluzione da titolare se troppo concentrata (>1M) va diluita e posta in un becher con ancoretta magnetica 2- Titolare con una soluzione a titolo noto con l’ausilio di una buretta azzerata 3- La parte sensibile dell’elettrodo indicatore deve essere completamente immerso nella soluzione senza toccare le pareti del recipiente 4- La soluzione deve essere mantenuta in agitazione senza creare turbolenze 5- Effettuare aggiunte cospicue (0.5-2 ml) di titolante fino a 1-2 ml prima del previsto punto equivalente (viraggio) 6- Dopo ogni aggiunta di titolante assicurarsi che il sistema abbia raggiunto l’equilibrio 7- Dopo ogni aggiunta di titolante registrare il volume totale di titolante aggiunto e il valore di pH o i mV misurati 8 Nell’intervallo di viraggio, l’aggiunta di titolante deve essere tanto più piccola quanto più ripida è la curva di titolazione 9- Effettuare aggiunte cospicue (0.5-2 ml) di titolante dopo il viraggio.

Non è necessario tarare il piaccametro con soluzioni tampone perché il punto equivalente è individuato dalla variazione relativa del pH

Applicazione analitica dei sensori potenziometrici MODO 1: applicazione diretta dell’equazione di Nernst:   misura di E cell e calcolo diretto della concentrazione non molto accurato: il comportamento dell’elettrodo dovrebbe essere ideale e note tutte le sue proprietà  raramente si usa in questo modo diretto MODO 2: potenziometria di punto nullo     usare due elettrodi indicatori per la stessa semireazione una semireazione nota e l’altra incognita variare la concentrazione nota fino a che Ecell = 0 questo metodo elimina problemi relativi all’attività degli analiti, ma richiede molto tempo di operazione.

MODO 3: metodo della retta di taratura    misurare una serie di standard e produrre una retta di taratura.

usare curve del segnale in funzione del log [C] interpolare il valore del segnale dell’analita MODO 4: metodo dell’aggiunta standard   ISE presentano problemi a basse concentrazioni: tempi lunghi per raggiungere l’equilibrio grande errore relativo Il metodo dell’aggiunta standard minimizza questi problemi.

METODO DELL’AGGIUNTA STANDARD E cell CONCENTRAZIONE INCOGNITA CONCENTRAZIONE STANDARD

Elettrolisi

Cella elettrolitica Energia elettrica  Energia chimica Reazioni di scarica agli elettrodi:

catodo

(-)

semireazioni di

RIDUZIONE

A z+ + z

e -

 A

anodo (+)

Se l’elettrodo è reattivo può avvenire l’ossidazione del metallo che costituisce l’elettrodo: semireazioni di

OSSIDAZIONE

B M z   M B + z z+ + z

e e -

Anodo : elettrodo positivo Catodo : elettrodo negativo Soluzione elettrolitica (o elettrolita fuso) Elettrochimica

Scarica delle specie agli elettrodi

Difficilmente in una soluzione è presente una sola coppia redox. Allora, quale coppia si scarica per prima agli elettrodi?

Al catodo si scarica per prima la coppia con in potenziale di riduzione più alto

All’ anodo

si scarica per prima quella che ha il

potenziale di riduzione più basso

Spesso ci si basa sui valori di E

°

Fenomeni di SOVRATENSIONE possono invertire l’ordine di

scarica

Elettrochimica

Sovratensione

La sovratensione ha origine cinetica  I processi elettrochimici sono

Sovratensione di attivazione

notevolmente lenti

e quindi spesso richiedono

aumento della tensione applicata

Elettrodo

Pt platinato

sovratensione H

0.05

2 (V)

Pt liscio Au Ag 0.67

0.80

1.09

Cu Hg Grafite 1.25

1.11

1.22

un’

La sovratensione di H 2 è trascurabile solo su elettrodo di

Pt platinato

Elettrochimica

Elettrolisi dell’acqua

corrente elettrica

2 H 2 O O 2

(g)

a) soluzione acida

([H 3 O + ] >> 1,00 10 2 H -7 2

(g) moli l

+

-1

) catodo (-) H 2 O anodo (+) 2

e -

2 H 3 O + + 2

e -

 H 2

(g)

+ 2 3 H 2 O  1/2 O 2

(g)

+ 2 H 3 O + +

b) soluzione basica

1

) ([H 3 O + ] << 1,00 10 -7

moli l -

catodo (-) anodo (+) 2 H 2 O + 2

e -

4 OH  O 2 

(g)

H 2

(g)

+ 2 OH + 2 H 2 O + 4

e -

-

c) soluzione neutra

catodo (-) anodo (+) 2

e -

([H 3 O + ] = 1,00 10 -7 2 H 2 O + 2

e -

3 H 2 O  1/2 O 2 Elettrochimica  H 2

(g) (g) moli l

+ 2 H 3 O +

-1

+ 2 OH ) +

Elettrolisi di soluzioni acquose

4 (in presenza di H 2 SO 4 per impedire l’idrolisi degli ioni Zn 2+ ). Come catodo si utilizza un elettrodo di Zn e come anodo un elettrodo di Pb: catodo (-) Zn : anodo (+) Pb : Zn 2+ + 2

e -

 3 H 2 O  1/2 O 2 Zn

(g)

+ 2 H 3 O + + 2

e -

Al catodo avviene la riduzione degli ioni Zn base ai valori di

E °

2+ e non quella degli ioni H 3 O + come dovrebbe essere in (

E °

Zn2+/Zn = - 0,763

V

), ciò è dovuto all’elevata sovratensione di H 2 sull’ elettrodo di Zn.

All’anodo si ha l’ossidazione di H 2 O e non dello ione SO 4 2 2,01

V

dato che:

E °

O2/H2O = 1,23

V; E °

S2O8/SO42 =

Elettrolisi di sali fusi

Si utilizzano sali fusi per la produzione di metalli come Na, Mg, ecc., (a causa dei loro potenziali di riduzione negativi non si possono usare soluzioni acquose perché si avrebbe la riduzione di acqua).

Il Na si prepara per elettrolisi di un fuso costituito da NaCl (~40%) e CaCl 2 (~60%) a 600

° C

catodo (-) acciaio : anodo (+) grafite : Na + 2 Cl +

e -

  Cl 2 Na

(l) (g)

+ 2

e -

Il Na

(l)

galleggia sul fuso e viene raccolto su kerosene per evitare il contatto con l’aria o l’umidità (il Na reagisce rapidamente con ossigeno e violentemente con acqua.

Elettrochimica

Applicazioni industriali dell’elettrolisi

Elettrochimica

La corrosione dei metalli

Insieme di fenomeni chimici che risultano nella degradazione di un metallo (peggioramento delle proprietà chimiche e fisiche). Alla base c’è sempre un processo di

ossidazione del metallo che si corrode

Corrosione di

origine chimica

: azione di sostanze come: CO, CO 2 , SO 2 , H 2 S, NH 3 , H 2 SO 4 , HNO 3 , ecc.

Corrosione dovuta alle

correnti elettriche vaganti

funzionano come elettroliti, fenomeni di elettrolisi nei quali le strutture metalliche interrate fungono da elettrodi.

nel terreno; l’acqua e i sali Fenomeni di corrosione dovuti alla presenza

contemporanea

di ossigeno e acqua Elettrochimica

La corrosione dei metalli

Elettrochimica

La corrosione dei metalli

In generale, metalli con

potenziale di riduzione molto alto

alla corrosione (Cu,

E °

= 0.337

V

; Au,

E °

= 1.42

V

) resistono molto bene Alcuni metalli che hanno un

potenziale di riduzione molto negativo

(Al,

E °

= 1.66

V

; Ti, E ° = - 0.89

V

metalli che hanno un

E °

; Cr,

E °

= - 0.74

V

) resistono meglio alla corrosione di altri molto meno negativo (Fe,

E °

= - 0.45

V

).

Questo diverso comportamento è dovuto al fatto che questi metalli a contatto con l’atmosfera si ricoprono rapidamente, per inizio della corrosione, di un sottilissimo velo di

ossido

, molto aderente, insolubile che costituisce una barriera.

Questo fenomeno è chiamato

PASSIVAZIONE DEI METALLI

Elettrochimica

La corrosione dei metalli

Condizioni per la

PASSIVAZIONE:

E °

molto negativo, rapida corrosione iniziale del metallo; •formazione di uno strato molto sottile di ossido, insolubile e poco reattivo (barriera cinetica) •dimensioni reticolari dell’ossido poco diverse (10-15%) da quelle del metallo: buona adesione tra strato di ossido e metallo.

Passivazione spontanea: migliore protezione contro la corrosione

Elettrochimica

Corrosione galvanica Inclusioni di metalli più nobili

(

E °

più alto) determinano la formazione di una pila chimica, e il metallo meno nobile passa in soluzione.

Es. inclusioni di Cu (

E °

= 0,337

V

) nel Fe(

E °

= - 0.45

V)

(-) Anodo (Fe): (+) Catodo (Cu): Fe  Fe 2+ + 2

e -

O 2 + 4

e -

+ 2 H 2 O  4 OH -

E E ° °

= - 0.45

= 0.401

V V

2 Fe + 2 OH  Fe (OH) 2

(s)

Si sottraggono ioni Fe 2+ e di conseguenza se ne formano altri.

L’inizio della precipitazione di Fe (OH) 2 che così

arruginisce

(s)

segna l’inizio del processo di corrosione del Fe 2Fe (OH) 2

(s)

+ 1/2 O 2 + H 2 O  2 Fe(OH) 3

(s)

 Fe 2 O 3 .

H 2 O

(s)

+ 2 H 2 O ossido di ferro (III) idrato:

ruggine

Elettrochimica

Corrosione galvanica

Elettrochimica

Corrosione per aerazione differenziale

E’ determinata da una

diversa concentrazione di O 2

a contatto con una superficie metallica in presenza di un velo di umidità.

Es: Superficie di Fe (purissimo) sulla quale in presenza di aria è stata deposta una goccia d’ acqua. Lo strato di acqua ai lati della goccia è più sottile di quello centrale e pertanto si ha una maggiore concentrazione di O 2 Si viene a creare una pila a concentrazione formata da due semielementi a O 2 O 2 + 2 H 2 O + 4

e -

 4 OH -

E

=

E ° +

0,0591 4 Log [O

2

] [OH ] 2 La zona dove [O 2 ] è maggiore funziona da catodo (estremità della goccia), mentre l’altra è l’anodo (zona centrale). Tuttavia, poiché

E °

O2/OH = 0.401

V

, all’anodo si ossida il Fe (

E °

Fe2+/Fe = - 0,44

V

). Il prodotto è ancora l’ossido di Fe (III) idrato (ruggine) Elettrochimica

La corrosione per aerazione differenziale

Elettrochimica

Riepilogo del meccanismo di corrosione

Elettrochimica

Protezione dalla corrosione

Esistono numerose tecniche per proteggere i metalli (Fe) dalla corrosione:

Rivestimenti

presentare con strati impermeabili (vernici, materie plastiche, vetro, ecc.); lo strato non deve difetti.

Elettrodeposizione

: si forma un rivestimento con un metallo avente

E °

tende a passivarsi. Con metalli aventi

E °

più negativo (Zn, Cr, Ni) che maggiore del Fe, lo strato deve essere assolutamente continuo per evitare la corrosione galvanica.

Corrente impressa

: L’oggetto di Fe da proteggere è collegato al polo (-) di una sorgente esterna di corrente continua mentre un altro blocco di lega ferrosa è collegato al polo (+). L’oggetto di Fe funziona da catodo di una cella elettrolitica e quindi non si ossida

Protezione catodica

: L’oggetto di Fe viene collegato ad un altro metallo avente

E °

Mg) che si comporta da

anodo sacrificale

ossidandosi al posto del Fe.

più negativo (es. Elettrochimica

Protezione dalla corrosione

Elettrochimica