Global Design Effort

Download Report

Transcript Global Design Effort

Global Design Effort - CFS
Single-Tunnel Accelerator Configuration
Of Asian Region
Atsushi Enomoto
(KEK)
ILC10 Beijing, 26-30 March, 2010
1
Global Design Effort - CFS
Contents of this talk





Development of TDP2 design concepts
Applicability of RDR Design to Other Sites
Preliminary Study By TDP2 Concepts
Cost Impacts (Very preliminary)
Summary
ILC10 Beijing, 26-30 March, 2010
2
Global Design Effort - CFS
Development of TDP2 design concepts
ILC10 Beijing, 26-30 March, 2010
3
Global Design Effort - CFS
Keypoints for TDP2 Design Concepts
Cost Reduction from RDR
 (Deep) Single-Tunnel Accelerator Configuration
Should be harmonized (balanced) with
Applicability to Site and Environmental Conservation
 Less surface facilities and plants
Life Safety / Accessibility to Underground Accelerator
 Enough evacuation / access passages
Risk reduction for tunnel excavation
 Heading for the main accelerator tunnel
Advantage of Topology
 Spontaneous drainage of sump water
ILC10 Beijing, 26-30 March, 2010
4
Global Design Effort - CFS
Contents of the TDP2 Design Concepts
Single-Tunnel Accelerator Configuration
 Focus on the DRFS scheme
Less surface plants and facilities
 Avoid large-scale site developments
 Reduce access shafts/tunnels from the ground
Enough Access / Evacuation Passages
 Keep a sub-tunnel along the accelerator
 Connection to the accelerator every ~600 m (4 Cryostrings)
 Limit the use for only transport and non-active utilities
Heading
 Keep sub-tunnel excavation 500~2000 m ahead
Spontaneous Drainage of Sump Water
 Raise tunnel elevation to/above valley bottom
 (The accelerator partly appears near/above the surface ground.)
ILC10 Beijing, 26-30 March, 2010
5
Global Design Effort - CFS
Change of Tunnel Configuration in TDP2
RDR: Beam Tunnel + Service Tunnel + Access/Utility Tunnels
TDP2: Accelerator Tunnel + Access/Utility Tunnels/Shafts
RDR
TDP2
Cavern
Double-Tunnel
Accelerator
Cavern
Access
Tunnel
Single-Tunnel
Accelerator
ILC10 Beijing, 26-30 March, 2010
Subtunnel
6
Global Design Effort - CFS
Applicability of RDR Design to Other Sites
ILC10 Beijing, 26-30 March, 2010
7
Global Design Effort - CFS
Preliminary Study By TDP2 Concepts
CFS Working Group,
Advanced Accelerator Technology Promotion Association (AAA)
ILC10 Beijing, 26-30 March, 2010
8
Global Design Effort - CFS
Overall Civil Layout (Construction Phase)
Virtual Site
Reduce Access Shafts/tunnels
Raise Beam Tunnel Elevation
凡 例
Main Tunnel,
Heading
: 本坑、 先進坑
Sloped Tunnels
(Construction)
: 斜坑( 工事用)
Shafts
(Construction)
4, 123M
TBM掘削区間
4, 123M
12, 446M
Zone-⑦
4, 200M
Zone-⑥
( Poi nt -0)
IR
P5
Zone-⑤
P4
Zone-④
NATM掘削区間 ( 拡幅区間)
2, 000M
1, 876M
2, 000M
5, 876M
30, 901M
ILC10 Beijing, 26-30 March, 2010
P3
Zone-③
立坑( L=60M)
立坑( L=40M)
立坑( L=30M)
.1
%)
1M
,G
=5
,3
1
立坑( L=50M)
)
斜
0%
NATM掘削区間
Zone-⑧
(L
=1
1
G=
M,
Zone-⑨
P6
本坑お よ び補助坑
ネル
6%)
ト ン
0. 5
排水
, G=
00M
3, 0
( L=
00
,5
P7
P8
P9
坑
=1
(L
P10
150M
Eof N. P.
1, 000M,
G=10%)
坑
G=10%)
斜坑 ( L=1, 000M
本坑お よ び補助坑
斜 坑 ( L=
斜
斜 坑 ( L=1, 50
0M, G=10%)
: 立坑( 工事用)
P2
Zone-②
P1
Zone-①
NATM掘削区間
TBM掘削区間
4, 999M
3, 480M
12, 229M
3, 750M
200M
Eof S. P.
9
Global Design Effort - CFS
Overall Civil Layout (Final)
Legends
凡 例
Hall
: Detector
実験空洞
Only 3 Cooling Tower Farm
: Cryoplants
冷凍機室
Access / Evacuation Passages
: 連絡通路
Local Substations
お よ び低圧電源室
Towers
: Cooling
冷却塔
and Sub
: Main
本坑、
サブ Tunnels
トンネル
shafts / sloped
: Access
連絡斜坑、
立坑 tunnels
Cooling
Tower
冷却塔
Cooling
Tower
冷却塔
斜坑
Cooling
Tower
冷却塔
( L=
00M
1, 0
0
G=1
Cryoplants
冷凍機室
Cryoplants
冷凍機室
Cryoplants
冷凍機室
Cryoplants
冷凍機室
Cryoplants
冷凍機室
Detector
Hall
実験ホ ール空洞
( B=30M, H=40, L=120M)
( W=10m, H=10m, L=100m) )
%)
( @4, 000M毎)
DAMPI NG RI NG
( W=10m, H=10m, L=100m) )
Cryoplants
冷凍機室
Cryoplants
冷凍機室
( 外周L=3. 2kM, 楕円形) )
Local
Substation
低圧電源室
( @500M毎)
( W=5m, H=4m, L=10m) )
( @500M毎)
( W=5m, H=4m, L=10m) )
3, 236M
12,Cryoplants
026M( MAI N LI NAC)
( GEOI D)
Drainage ル)
( 自然放流レベ
ネル
ト ン
6% )
排水
0. 5
, G=
00M
3, 0
( @500M毎)
( L=
Passage
Local Substation
低圧電源室
連絡通路
570M( RTMR)
( GEOI D)
Cryoplants
冷凍機室
Cryoplants
冷凍機室
Access/Evacuation
Passage
連絡通路
( @500M毎)
2, 640M
5, 876M( BDS)
( LASER STRAI GHT)
30, 901M
ILC10 Beijing, 26-30 March, 2010
11, 859M( MAI N LI NAC)
( GEOI D)
570M( RTMR)
( GEOI D)
10
Global Design Effort - CFS
Tunnel Configuration
14, 650
Main 本坑
Tunnel
支保+吹付コンクリート
φ
4, 500
100
100
4, 100
φ
(Accelerator)
300 170
10, 000
防水シ ー ト
100
100
2, 600
覆工コ ン ク リ ー ト
( t =300)
50
1, 150 300 1, 200
(Access)
サブ トンネル
一次吹付コンクリート
615
( t =100)
( t =100)
2, 500
路盤コンクリート
縦断排水管
( φ300)
送水管
1, 200
( φ500×2)
435 750
4, 500
φ
( φ900×2)
370
3, 000
200
二次吹付コンクリート
冷却水管
6, 140
φ
Sub Tunnel
イ ン バー ト ブ ロ ッ ク
( プ レ キャ ト )
縦断排水路( 開水路)
( B=1500, D=250~750)
( 勾配=0. 1%)
ILC10 Beijing, 26-30
March, 2010
標準断面
170 300
φ
5, 200
φ
6, 140
300
170
11
Global Design Effort - CFS
Main Tunnel
(Spec.)
f6.58 m TBM, f5.2 m finished I.D.
Shotcrete
Lining concrete ~30 cm
Waterproof Sheet
Waterproofing (waterproof sheet)
Drainage tunnel
Lining Concrete
(Construction)
TBM assembled under the ground
~4 km /TBM,
Waterproof Sheet
~350 m/month (with heading)
Drainage boring
Invert Liner
Floor Concrete
Concrete lining after excavation
Invert Block
ILC10 Beijing, 26-30 March, 2010
(<->One-path lining with Precast segment )
12
Global Design Effort - CFS
Sub Tunnel
4500
4100
f4.5 m TBM, f4.1 m finished I.D.
天 井 版 (ダ ク ト 空 間 )
吹 付 コ ン(prim.)
ク リ ー ト (一 次 )
Shotcrete
(Construction)
TBM assembled under the groud
0
10
~4 km /TBM, ~250 m/month
10
200
0
Shotcrete
(second.)
吹付コンク
リ ー ト (二 次 )
2500
Heading for Main Tunnel
90
0
R2
φ
05
0
1435
“Shotcrete” finish
Evacuation Area
~500-2000 m ahead
Cooling Pipe
1065
Geologicalsurvey
1185
Drain Pipe
Cooling Water Pipe
450
排 水 管 (φ 500× 2条 )
Drainage of sump water
(Required Structure)
500
Transport
Area
排 水 路 (W =1500,
Drain Channel
D =250~ 750)
Drain Pipe
Drainage Channel
1500
3503
ILC10 Beijing, 26-30 March, 2010
Transport Area
Human Evacuation Area
13
Global Design Effort - CFS
Passages
41, 000
低圧電源室
400
( i =8. 0%
3, 800
400 3, 000 400
)
2, 500
10, 000
37, 50 0
1, 400
400
400 3, 000
Sub Tunnel
3, 232 2, 900
5, 800
5, 000
400
400
本 坑
Main
Tunnel
( 内径=5,
200φ)
2, 500
4, 076
400
2, 500
3, 676
400
( W=5. 0m, H=4. 0m, L=10m)
サブ ト ン ネ ル
( 内径=4, 100φ)
φ
φ
φ
170 300
300 170
5, 200
低圧電源室
100
40
0
φ
100
100
( W=2. 5m, i =8. 0%)
5, 000
2, 500
縦断排水管
( φ300)
200
400
冷却水管
2, 930
2, 130
0%
i=
8.
2, 500
送水管
( φ500×2)
400
4, 500
φ
( φ900×2)
435 750
6, 140
連絡通路平面図
370
400
50
1, 150 300 1, 200
2, 400
φ
4, 000
0
φ
50
2, 600
2,
615
400
r=
3, 200
4, 100
サブ トンネル
1, 200
400
100
300 170
本坑
4, 500
連絡通路
6, 140
排水管( φ300)
2, 500
3, 232
400
6, 132
4, 076
6, 976
サブ トンネル&連絡通路
本坑&低圧電源室
ILC10 Beijing, 26-30 March, 2010
14
Global Design Effort - CFS
Drainage of Sump Water
No exact sump water data along the tunnel routes.
0.018-0.84 (av.~0.2) m3/min/km is the value for existing tunnels in similar geology (Japan Tunnelling
Association, 1983).
Key points: Avoid radioactivation, High maintenablity, Reliability, Low operation cost
Spontaneous flow
ILC10 Beijing, 26-30 March, 2010
15
Global Design Effort - CFS
Transport of Sump Water
~300 kW is necessary electricity for the sump water treatment.
ILC10 Beijing, 26-30 March, 2010
16
Global Design Effort - CFS
Detector Hall and Central Area
ILC10 Beijing, 26-30 March, 2010
17
Global Design Effort - CFS
Cost Impacts
(Very preliminary)
ILC10 Beijing, 26-30 March, 2010
18
Global Design Effort - CFS
Civil Cost Reduction (preliminary estimates)
Asian Civil cost will still be reduced in TDP2 even if we take care more of
environment, life safety, accessibility, excavation risk, sump water, etc. …
ILC10 Beijing, 26-30 March, 2010
19
Global Design Effort - CFS
Asian CFS Review
To start TDP2, the Asian CFS Team would
invite reviewer (M. Ross, V. Kuchler, J.
Osborne, and necessary experts) at an early
date (in May or June). (under planning)
ILC10 Beijing, 26-30 March, 2010
20
Global Design Effort - CFS
Summary
ILC10 Beijing, 26-30 March, 2010
21
Global Design Effort - CFS
Summary
(1) In TDP2, the Asian CFS team will make a regional
activities based on the Single-Tunnel Accelerator
Configuration, focusing on the DRFS high-level RF
system.
(2) The regional design will be developed taking
account of not only cost reduction but also wider
site applicability, life safety, environment
conservation, risk management, etc.
(3) Preliminary study by AAA CFS Working group
helped us to find a direction by which the above
goals will be achieved.
ILC10 Beijing, 26-30 March, 2010
22