中国风电并网研究

Download Report

Transcript 中国风电并网研究

Study on Wind Power Grid-Integration
China Experience
(中国风电并网研究)
China EPRI, ZHU Lingzhi
2013-09 Beijing, China
Content (目 录)
Wind Power in China
中国风电情况
 Study on Grid Integration of Wind Power
风电并网研究
 Models and Tools for Grid integration study
风电并网研究的模型与工具
 Problem and Suggested Improvement
风电并网研究的不足与改进
1.1 Developing Mode of Wind Power
风电开发模式
 Bulk Wind Power Base (千万千瓦级风电基地)
Resource(资源)
 Exploitable capacity: 2500GW
(技术可开发量25GW)
 80% of the wind resource is
concentrated in north, northeast,
and northwest of china
80%位于东北、华北和西北地区
黑龙江
吉林
蒙东
哈密
酒泉
蒙西
Development Plan(开发规划)
 Up to 100GW at 2015 and 200GW at 2020.
2015年1亿千瓦,2020年2亿千瓦
 Nine 10GW wind bases, covers 80% of the total capacity.
9个千万千瓦级风电基地,占总容量的80%
 30GW are off-shore. (其中海上风电3000万千瓦)
河北
山东
江
苏
沿
海
1.1 Developing Mode of Wind Power
风电开发模式
 Bulk Wind Power Base (千万千瓦级风电基地)
 Several wind farm connected collection substation, Wind power are transferred
through UHV or EHV.
多个风电场接入汇集站,通过超高压或特高压输电通道送出
1.1 Developing Mode of Wind Power
风电开发模式
 Large Scale Wind Farm (大规模风电场)
 Each wind farm 50-200MW(单个风电场装机50-200MW)
 Connected to the grid through 110-220kV line(通过110-220kV线路接入电网)
 Electricity are consumed inside a province(电力一般在省内消纳).
1.1 Developing Mode of Wind Power
风电开发模式
 Distributed Wind Farm (分散式风电)
220kV
ϵͳ
±äµçÕ¾
690V
690V
690V
690V
35kV
35kV
35kV
35kV
35kV
110kV
 Connected to local substation through 10-35kV line, long distance power
transfer is not necessary. (10-35kV接入,电力无需远距离传输)
 Total installation capacity is normally less than 20MW at single PCC.
(单个接入点容量一般不超过20MW)
 Covers a relatively small part of wind power in china.(占比相对较少)
1.2 Wind Turbines in China
中国的风电机组
 Three Types of Wind Turbine (三种主要的机组类型)
Fixed Pitch Induction Wind Generator
定桨距失速型异步感应风电机组
Type I
• Early Type, rarely seen in new installed wind turbines, but still in operation.
(早期机型,已逐渐退出市场,但仍具有一部分存量)
• Less than 1MW. (单机容量1MW以下)
1.2 Wind Turbines in China
中国的风电机组
 Three Types of Wind Turbine (三种主要的机组类型)
Doubly Feed Asynchronous Induction Generator (DFIG/DFAG)
变桨距双馈异步感应风力发电机组
Type III
• Main Type, covers about 75% of new installed wind turbines.
主流机型,占新装机型的75%左右
• 1.5MW and above. (单机容量1.5MW及以上).
1.2 Wind Turbines in China
中国的风电机组
 Three Types of Wind Turbine (三种主要的机组类型)
Permanent Magnet Synchronous Generator(PMSG) with Full rated Converter
永磁直驱同步风电机组(全功率变流器)
Type IV
Permanent Magnet
• Main Type, covers about 25% of new installed wind turbines.
主流机型,占新装机型的25%左右
• 1.5MW and above. (单机容量1.5MW及以上).
Content (目 录)
 Wind Power in China
中国风电情况
 Study on Grid Integration of Wind Power
风电并网研究
 Models and Tools for Grid integration study
风电并网研究的模型与工具
 Problem and Suggested Improvement
风电并网研究的不足与改进
2.1 Two Types of Grid-integration Study
两种类型的并网研究
 Special Study on Wind Farm Grid Integration
(风电场接入电力系统专题研究)
• Done while wind farm is planning
在风电场规划前期阶段进行
• Help to Design the grid-integrated system of wind farm
指导风电场并网系统的设计
 Analysis of Large Scale Wind Power Trip-off
(风电大规模脱网事故分析)
• Analysis the procedure of wind power trip-off and find the reason.
分析风电大规模脱网事故发生的原因
• Bring out suggestion to improve the stability of the grid with high
penetration wind power
提出改进风电接入系统稳定性的措施
2.2 Special Study on Wind Farm Grid Integration
风电场接入电力系统专题研究
 Contents (主要内容)
 Analysis of Wind Resource (风能资源分析)
 Load Flow and Reactive Power Study (潮流和无功问题研究)
 Short Circuit Current Analysis (短路电流分析)
 Study on Transient Stability (暂态稳定分析)
 Study on Power Quality Problem (电能质量问题分析)
2.2 Special Study on Wind Farm Grid Integration
风电场接入电力系统专题研究
 Analysis of Wind Resource (风能资源分析)
Goals(目标)
• Calculate the probability distribution of power output and power ramp of
the wind farm according to measured wind resource data
根据实测风速数据,计算风电场出力及其变化的概率分布
• Analysis the relationship between local load and wind power output
according to local load characteristic
根据电网的负荷数据,分析风电场出力与所在地区负荷相关性
2.2 Special Study on Wind Farm Grid Integration
风电场接入电力系统专题研究
 Analysis of Wind Resource (风能资源分析)
Data Requirement(数据需求)
• Measured wind resource data(more than 1 year) 风资源数据(至少一年)
• Data about the wind farm.风电场建设数据
• Power curve of wind turbines to be installed(风电机组功率特性曲线)
2.2 Special Study on Wind Farm Grid Integration
风电场接入电力系统专题研究
 Load Flow and Reactive Power Study (潮流无功研究)
Goals(目标)
• Evaluate the impact on system load flow and voltage level.
评估风电场接入后对电网潮流分布、无功电压水平的影响。
• Give suggestions of voltage regulation and var compensation of the wind
farm and grid.给出风电场和系统的电压调整和无功补偿建议
Data Requirement
•
Static grid data
•
Typical system operation scenario
电网静态数据
典型系统运行方式
出力(%)
0
10
20
30
40
50
60
70
80
90
100
无功交换
风电场侧
110kV母线侧
-0.57
-0.66
-0.92
-1.35
-1.94
-2.71
-3.64
-4.74
-6.02
-7.49
-9.16
1.16
1.06
0.74
0.21
-0.54
-1.48
-2.63
-4.00
-5.60
-7.42
-9.49
2.2 Special Study on Wind Farm Grid Integration
风电场接入电力系统专题研究
 Study on Short Circuit Current (短路电流计算)
Goals(目标)
•
Analysis short circuit current output of the wind farm and its impact on
short circuit level of the local power system.
计算风电场的短路电流输出特性,分析风电场接入后对所在区域电网
短路电流水平的影响。
Data Requirement(数据需求)
•
Static grid data
•
Short circuit character of wind turbines
•
Short circuit character of generators
of the power system
电网静态数据
风电机组短路电流特性
系统发电机短路电流特性
2.2 Special Study on Wind Farm Grid Integration
风电场接入电力系统专题研究
 Study on Transient Stability (暂态稳定分析)
Goals(目标)
Evaluate the impact to power system transient stability of the wind farm
评估风电场接入后对电网暂态稳定性的影响。
Data Requirement(数据需求)
1.25
DIgSILENT
•
90.0
1.00
•
•
•
Static grid data
电网静态数据
0.75
80.0
0.50
0.25
70.0
0.00
System dynamic model and parameters
系统动态模型和参数
Models and parameters of WTG
风电机组模型和参数
Typical fault type
典型故障方式
-0.25
0
1
2.
3.
ÓÀÈÊ110kVĸÏß: AÏàµçѹ£¨pu£©
ÍòÂí110kVĸÏß: AÏàµçѹ£¨pu£©
ÓÀÈÊ220kVĸÏß: AÏàµçѹ£¨pu£©
ÂÀºÏ500kVĸÏß: AÏàµçѹ£¨pu£©
4.
[s]
5.
60.0
1.2
1.23
1.0
1.22
0.8
0
1
2.
3.
°¢º£G1: Ïà¶Ô¹¦½Ç£¨¶È£©
СÍåG1: Ïà¶Ô¹¦½Ç£¨¶È£©
³µØÀ-G1: Ïà¶Ô¹¦½Ç£¨¶È£©
4.
[s]
5.
0
1
2.
3.
é°ÞÌï·çµç»ú×é: תËÙ£¨pu£©
4.
[s]
5.
DIgSILENT
•
1.21
0.6
1.20
0.4
1.19
0.2
0
1
2.
3.
4.
é°ÞÌï·çµç³¡110kVĸÏß: AÏàµçѹ£¨pu£©
é°ÞÌï·çµç»ú×é»ú¶ËĸÏß: AÏàµçѹ£¨pu£©
[s]
5.
1.18
2.2 Special Study on Wind Farm Grid Integration
风电场接入电力系统专题研究
 Study on Harmonics (电能质量问题研究)
Goals(目标)
•
Calculate the voltage harmonic distortion of PCC considering harmonic
current injection from wind farm
考虑风电场并网产生的谐波电流注入后,计算风电场接入点的电压谐
波畸变;
Data Requirement(数据需求)
•
Static grid data
•
Data of the collection system of the wind farm
•
Harmonic test data of WTGs
电网静态数据
风电场集电系统参数
风电机组谐波测试数据
2.3 Analysis of Large Scale Wind Power Trip-off
风电大规模脱网事故分析
 Goals(目标)
• Analysis the procedure of wind power trip-off.
分析风电大规模脱网事故发生的过程
• Reappear the procedure by simulation and find the reason.
通过仿真再现事故发生的过程并分析导致事故的原因
• Bring out suggestion to improve the stability of the grid with high
penetration wind power
提出改进风电接入系统稳定性的措施
 Data requirement(数据需求)
• System operation scenario before and after accident.
系统事故前后运行状态
• Fault data from PMU and fault recorder
来自PMU或故障录波仪的故障数据
• Model of WTGs especial LVRT character
风电机组模型,特别是LVRT特性
2.3 Analysis of Large Scale Wind Power Trip-off
风电大规模脱网事故分析
 Record data of wind farm A from a trip off Accident
(某事故中风电场A录波数据)
The WTGs of wind farm A don’t
have the ability of FRT and trip
off because of under voltage
protection when fault occurs.
该风电场机组不具备故障穿越能
力,故障发生时由于低压保护而
脱网
2.3 Analysis of Large Scale Wind Power Trip-off
风电大规模脱网事故分析
 Record data of wind farm B from a trip off Accident
(某事故中风电场B录波数据)
Some WTGs of wind farm B don’t
have the ability of LVRT and trip
off because of under voltage
protection when fault occurs.
Some WTGs have the ability of
LVRT but trip off because of over
voltage protection when fault
cleared.
该风电场部分机组不具备故障穿
越能力,故障发生时由于低压保
护而脱网。部分机组机组具备低
电压穿越能力,但在故障清除后
由于高电压保护而脱网
2.3 Analysis of Large Scale Wind Power Trip-off
风电大规模脱网事故分析
 Record data of wind farm C from a trip off Accident
(某事故中风电场C录波数据)
The WTGs of wind farm C have
the ability of LVRT and didn’t trip
off when fault occurs. But some
WTGs trip off because of over
voltage protection when fault
cleared.
风电场C机组具备低电压穿越能
力,故障发生时未脱网,但仍有
部分机组在故障清除后由于高电
压保护而脱网
2.3 Analysis of Large Scale Wind Power Trip-off
风电大规模脱网事故分析
 LVRT Character of WTG(风电机组低电压穿越特性)
P1RMS
Uca1RMS
10^6
kV
1.5
35
30
1.0
25
20
0.5
15
10
0.0
3.5
4.0
4.5
5.0
5.5
3.5
6.0
4.0
4.5
5.0
5.5
s
s
Q1RMS
10^3
300
200
100
0
-100
LVRT Test Data of WTG Type A
-200
3.5
4.0
4.5
5.0
5.5
6.0
s
6.0
2.3 Analysis of Large Scale Wind Power Trip-off
风电大规模脱网事故分析
 LVRT Character of WTG(风电机组低电压穿越特性)
Uca1RMS
P1RMS
kV
10^6
35
1.5
30
25
1.0
20
15
0.5
10
12.0
12.5
13.0
13.5
12.0
12.5
13.0
13.5
s
s
Q1RMS
10^3
500
0
LVRT Test Data of WTG Type B
-500
12.0
12.5
13.0
13.5
s
2.3 Analysis of Large Scale Wind Power Trip-off
风电大规模脱网事故分析
 LVRT Character of WTG(风电机组低电压穿越特性)
Uca1RMS
P1RMS
kV
35
10^6
1.6
30
1.4
25
1.2
20
1.0
15
0.8
10
0.6
3.0
3.5
4.0
3.0
3.5
4.0
s
s
Q1RMS
10^3
0
-200
-400
LVRT Test Data of WTG Type C
-600
3.0
3.5
4.0
s
2.3 Analysis of Large Scale Wind Power Trip-off
风电大规模脱网事故分析
1 )
k
0
0
M
V
r
g S I
a
%
D I
v
A
2 2 0 k V
M
2 2 0 k V
0
V
5 0 . 0
4 . 3 0
M
v
a
r
V
A
e a k e r
/
S .
.
V
Á Ô
k
Á Ô
0
3 -
W
in d in g .
.
¾
Å Á ú È ª 2 22 20 0. k0 V0
k
2
V
0
.
0
0
M
V
± ù · å 2 22 02 k0 V.
0
0
1
2
0
A
.
k
V
0
0
¾
M
V
Å Á ú È ª 2 22 20 0. k0 V0
A
1
k
Á « » ¨ Ì ² 22 22 00 k. V0
V
2
0
.
0
0
M
V
A
2
0
.
0
0
M
V
A
0
M
V
A
1
F ilt
e r
(
0
1
1 M
0 .
3
5
4 )
2
.
0
0
.
0
0
M
V
A
MV(..
0
k
V
0
1
1 M
0 .
M
5
.
0
0
k
M
V
.
6
V A
0
0
V
2
0
M
V A
V
A
1
·
ç » ú
v
a
0
V
1 0 k V (1 10 ).
2
0
.
0
0
M
V
A
1
2
0
0
0
.
k
V
0 04
M
0 10 2 . % 0
.
0
k
M
V A
%in d in g .
0
0
M
V
ÒåÔµ110kV(1..
A
1
1
0
.
.
0
0
M
V
0
A
V
0
k
k
V
2
0
M
k
/
V A
0
0
M
v
a
.
6
å Ë « À ¡
k
V
2
2
2
S h u n t
F ilt
(
V3
5
.
0
0
W
e r
T 10
.
6
1 )
k
V
1
.
6
0
1
1 M
0 .
1
.
6
0
M
k
V
2
2
2
r
V A
9
/
F ilt
e r
0
V A
0
M
v
F ilt
e r
a
r
k
Å Á ú È ª
T 10
.
6
9
V A
2
G
~
¾
·
ç » ú
V A
S h u n t
W
.
V A
G
~
± ù ·
M
V
6
V A
2
.
.
.
k
/
V A
G
~
Á « » ¨
Ì
²
·
ç » ú
º
A
V
A
M
0
.
Ó
V
.
0
. 0 0
. 30 - 0 W
r
ÑÒ
ê2 22 20 0. k 0 V0
1
V
S h u n t
L in e (
0
0
2
k
/
F ilt
e r
± ± -
0
M
%
M
0
ì
.
0
A
0
(
k
º ê ´ ï 2 22 02 k0 V.
V
2
0
.
0
0
M
V
A
2
0
.
0
0
M
V
A
0
²
0
0
.
0
1
k
° Ó
V
2
0
.
0
0
M
V
A
2
0
.
0
0
M
V
A
Í · 22 22 00 k. V0
0
k
1
V
2
0
.
0
0
M
V
A
2
0
.
0
0
M
V
A
5 )
1
1
1
0
0
6
3
.
2 -
6
V3
5
.
0
0
1
M
v
a
.
6
0
M
V A
S h u n t
6
9
2
2
k
V
2
2
/
1
F ilt
k
1 M
4 .
0
V A
0
MV(..
M
v
a
3
r
5
.
0
0
k
1
.
6
0
k
V
2
2
2
M
V A
6
9
2
G
~
k
/
F ilt
·
ç » ú
 ¹
v
a
T 10
.
6
.
6
k
V
2
2
2
9
0
M
5
.
0
0
k
V A
/
F ilt
e r
(
W
2 )
T 10
.
6
k
1 0 k V
1
0
.
0
0
. 0 0
. 30 - 0 W
-
·
G
~
ç » ú
Ö
Ó
0
0
M
%
V
A
Î ÚµÇɽ2..
2
2
0
.
0
0
·
ç » ú
k
¼
V
2
0
.
2
0
.
0
0
M
V
A
0
0
M
V
A
Ñ ö Î 22 22 00 k . V0
v
a
r
e r
(
v
a
.
6
V3
5
.
0
.
0
k
V
0
1
1 M
V A
0 . 0 0
M
V
.
6
r
k
V
2
2
2
V A
/
1
F ilt
k
.
6
k
V
2
2
2
e r
0
M
3
5
.
0
M
v
a
T 10
.
6
9
V A
0
V3
5
.
0
0
k
V
k
V
1
.
6
0
1
1 M
0 .
1
.
6
0
M
k
V
2
2
2
r
V A
S h u n t
W
.
2
/
F ilt
e r
0
V A
0
ê ·
ç » ú
k
÷ è ÷ ë ɽ
V
2
0
.
2
0
.
0
0
M
V
A
0
0
M
V
A
2
º
22 20 0. k0 V0
1
k
k
ê ´
T 10
.
6
9
V A
2
.
k
/
V A
G
~
ï
·
ç » ú
°
½
V
2
0
.
1
2
0
.
0
0
M
V
A
0
0
M
V
A
ð Ñ ô 22 22 00 k . V0
Ó
0
5
Í
·
·
ç » ú
k
V
0
.
0
0
M
V
A
0
M
V
A
F ilt
MV(..
3
5
.
0
MV(..
V
3
5
.
6
1
.
6
0 1 M
7 . 0
0
0
2
9
2
2
k
2
0
1
1 M
5 .
0
M
3
5
.
0
0
MV(..
k
V
0
1
1 M
3 .
0
M
3
5
.
5
0
.
0
0
M
V
A
0
0
k
V
V A
M
M
v
a
r
M
V3
5
.
0
0
k
.
M
V
6
0 1 M
7 . 0
0
V A
M
V3
5
.
0
F ilt
e r
a
k
.
M
V
6
r
0
V A
0
V3
5
.
0
0
k
1
M
v
a
.
M
V
6
r
T r
/
1
V
.
0
1
v
0
V A
0
M
v
a
V3
5
.
0
0
k
V
1
.
6
0
M
1
.
6
0
M
k
V
2
2
2
V A
r
V A
2
6
V
V
1
.
1
MV(..
k
k
.
6
k
V
2
2
2
V A
0
M
V A
S h u n t
W
T 10
.
6
9
2
/
1
F ilt
k
V A
.
6
k
V
2
2
2
e r
V A
S h u n t
W
.
T 10
.
6
2
1
.
k
0
9
2
/
1
F ilt
k
V A
.
6
k
V
2
2
2
e r
V A
S h u n t
W
.
T r
0
T r
T 10
0
2
3
0
S h u n t
W
.
T r
.
k
2
5
2
V3
0
» ã ¼
2 -
6
M
1
6 )
.
0
/
¯ .
A
» ã ¼
V
.
M
¯ .
S h u n t
V
0
» ã ¼
k
0
.
.
¯ .
0
3
.
0
6
¯ .
.
W
0
in d in g .
1 1 0 k 1 V1
T 10
.
6
9
2
/
F ilt
k
V A
V A
e r
W
.
T 10
.
6
9
2
.
k
V A
G
~
º
« ¼
Ò
× ¯
G
~
Î
Ú µ Ç É ½
G
~
·
ç » ú
¼
G
~
Ñ ö Î
·
ç » ú
÷ è ÷ ë É ½
G
~
·
M
v
F ilt
e r
V A
S h u n t
W
.
G
~
Ñ Ò
T r
M
0
1
1
0
MV(..
k
.
2
0 . 0
0
1
M
1
1
1
0
V
0
0
.
V
L in e (
k
.
.
M
V A
0
0
Ñ Ï
Ð ± ¦
T r
4 )
µ1 11 10 0. k 0 V0
M
V A
%in d in g .
k
0
4
0
2
.
G
~
Ô
A
9
8
1
M
5
1
0
V
0
3
T r
0
M
%
1 M
0 .
å ¼
.
0
0
1
V
6
Ò
4
0
V
V A
Ú Ï
.
.
9
2
.
å Î
0
1
1
å Ô
V3
r
Ò
8
MV(..
k
S h u n t
W
ß
¡
0
e r
V A
V
1
Ò
M
» ã ¼
k
A
T r
µ2 22 20 0. k 0 V0
V
V A
0 0
1
0
G
~
Ä Á ³
å Ô
M
M 1
7 .
V
6
S h u n t
.
2
Ò
.
1
1
.
.
M
0
1
S h u n t
T 10
V A
3
V
6
e r
W
.
0
0
ß
.
0
.
å ÷ è Ï
T 10
.
r
T r
1
W
k
V A
0
5
9 )
0 1 M
5 . 0
T r
2
1
3
L in e (
6
A
1
M
V
.
V
T r
k
1
M
Ò
0
MV(..
V
ß
0
1 )
.
2 (
5
0
T r
V3
2
M
k
0
.
.
.
L in e
0
¯ .
1
» ã ¼
1
2
110kV(..
V
T r
k
¯ .
0
» ã ¼
0
2
.
T r
5
¯ .
3
2
MV(..
V
T r
k
» ã ¼
.
0
in d in g .
0
W
.
¯ .
5
» ã ¼
3
» ã ¼
MV(..
¯ .
.
.
2
6
2
9
2
²
k
T r
T r
1
6
1 M
0 .
5
1
M
.
0
1
3
T r
0
0
1
0
.
r
1
.
0
1
0
a
Ó
4
.
9
8
1
- 22 22 00 k . V0
1
2
V
v
T r
k
¹ Ô
1 2 )
0
1
Å Á ú È ª
.
2
S h u n t
T 10
²
²
0
M
1
e r
Ô
0
4
F
F ilt
V A
 ¹
1
1
S h u n t
5
1
V A
0
0
T r
r
6
± ± -
a
8
ì
v
V3
V
.
ì
/
Ä
Á³ ¡ 2 2 0 k V
ilt e r ( 7 ) 2 2 0 .
k
G
~
± ± -
M
k
1
/
W
.
V
·
k
M
Í
6
2
9
A
0
Ó
6
V
0
°
.
¾
Ä Á ³
0
0
2 2 0 k V
T 10
2
1
0
0
± ± -
id
¡
1
5 .
.
r
ì
r
ì
1
V
5
V
²
G
2 2 0 k V
n a l
2 2 0 k V
e r
± ± -
k
a
MV(..
k
ï
.
2
S h u n t
0
v
0
ê ´
1
W
0
0
V
E x t
² ì ± ± 2 22 02 k0 V.
V3
1
M
2
k
T r
0
ê 2 2 0 k V
0
Ñ Ò
.
2
0
T r
0
.
2
V3
1
5
5
T r
M
¹ ÁÔ- 500kV(1..
3
M
.
ì
¯ .
MV(..
V
0
0
» ã ¼
0
k
0
2
2
.
.
0
0
¯ .
2
0
.
T r
/
.
2 2 0 k V
S h u n t
5
1
» ã ¼
1
3
.
a
v
M
0
. 0
7 )
6 )
1
5 0
MV(..
L in e (
L in e (
L in e (
5 )
2
r
V
0
.
1
V
k
2
T r
T r
1
A
T r
V
1
M
%
» ã ¼
k
0
0
.
0
0
4
¯ .
- 55 00 00 k . V0
.
.
» ã ¼
¹ ÁÔ
0
1
T r
5
1
0
1
1
1
7
ß
M
%
Ï
0
Á ²
0
7
¹
.
6
¹
0
.
1
4
8
¯ .
2
¹
¹
0
´
0
B r
- 3
5
5 .
3
Á Ô
0
´
´
4
0 .
6
¹ ÁÔ
-
-
-
7
²
4
0 .
6
0
Ì
(
- 22 22 00 k. V0
3 )
Á « » ¨
e r
(
Å Á ú È ª
F ilt
¹ ÁÔ
e r
¾
/
F ilt
± ù ·
S h u n t
/
å 2 2 0 k V
S h u n t
L E N T
 Simulation of the Accident(事故仿真)
ç » ú
½
ð Ñ ô ·
ç » ú
a
r
2.3 Analysis of Large Scale Wind Power Trip-off
风电大规模脱网事故分析
DIgSILENT
 Simulation of the Accident(事故仿真)
160
120
80
DIgSILENT
40
1.2
0
-40
0.8 -80
0.0
120
0.2
0.4
÷è÷ëɽ·çµç³¡ËͳöÏß: ÎÞ¹¦¹¦ÂÊ(Mvar)
0.6
0.8
[s]
DIgSILENT
1.0
0.6
90
0.4
60
0.2
300.0
0.2
0.4
0.6
÷è÷ëɽ·çµç³¡220kVĸÏß: BÏàµçѹ(pu)
0.8
[s]
1.0
0.2
0.4
÷è÷ëɽ·çµç³¡ËͳöÏß: Óй¦¹¦ÂÊ(MW)
0.8
[s]
1.0
0
-30
0.0
0.6
1.0
2.3 Analysis of Large Scale Wind Power Trip-off
风电大规模脱网事故分析
DIgSILENT
 Simulation of the Accident(事故仿真)
100
80
DIgSILENT
60
40
40
20
20
DIgSILENT
0
0
1.25
-20
0.0
0.2
0.4
0.6
[s]
0.8
0.4
0.6
[s]
0.8
0.4
0.6
[s]
0.8
¼Ñöηçµç³¡ËͳöÏß: Óй¦¹¦ÂÊ(MW)
1.00
-40
0.75
-60
0.0
0.2
¼Ñöηçµç³¡ËͳöÏß: ÎÞ¹¦¹¦ÂÊ(MVar)
0.50
0.25
0.00
0.0
0.2
¼Ñöηçµç³¡220kVĸÏß: BÏàµçѹ(pu)
Content (目 录)
 Wind Power in China
中国风电情况
 Study on Grid Integration of Wind Power
风电并网研究
 Models and Tools for Grid integration study
风电并网研究的模型与工具
 Problem and Suggested Improvement
风电并网研究的不足与改进
3.1 Tools for Grid-Integration Study of Wind Power
风电并网研究的主要工具
 Three main analyssis tools in china for wind power
integration Study
中国三个用于风电并网研究的主要工具
 PSASP (电力系统分析综合程序)
 PSD Tools (PSD电力系统分析软件包)
 DIgSILENT PowerFactory
3.1 Tools for Grid-Integration Study of Wind Power
风电并网研究的主要工具
 Power System Analysis Software Package,PSASP
电力系统分析综合程序
 A composited tool for power system
analysis, developed by China EPRI.
综合性电力系统分析软件,由中国电力科
学研究院开发。
 Widely used in Power System Analysis
广泛应用于中国的电力系统分析
 Several models of wind turbines are
internal included, and user defined model
is supported.
内置了常用类型风电机组模型,具备用户
自定义模型的功能
3.1 Tools for Grid-Integration Study of Wind Power
风电并网研究的主要工具
 PSD(Power System Department) Tools
电力系统分析软件包
 Another composited tool for power system
analysis, developed by China EPRI based
on BPA program.
综合性电力系统分析软件,由中国电力科
学研究院基于BPA开发。
 Widely used in Power System Analysis in
China
广泛应用于中国的电力系统分析
 Several models of wind turbines are
internal included, user defined model is
not supported.
内置了常用类型风电机组模型,不支持用
户自定义模型的功能
3.1 Tools for Grid-Integration Study of Wind Power
风电并网研究的主要工具
 PowerFactory, (DIgSLIENT GmbH, Germany)
 Worldwide used composited platform for power
system analysis and research.
世界范围内广泛使用的综合性电力系统分析和
研究平台。
 Different kinds of models for renewable generation
such as wind turbine, PV system and energy
storage system.
提供了多种新能源发电系统模型,如风电、光
伏发电、储能系统等。
 Powerful user defined model tools through DSL
Language.
通过DSL语言,实现了较为强大的自定义模型
功能
 Not compatible with data format of PSASP and
PSD Tools
与PSASP和PSD Tools数据格式不兼容
3.2 Models of Wind Turbines
风电机组并网分析模型
 Wind Turbine Models in PSASP and PSD-BPA
Model for Induction Asynchronous Wind Turbine (Type I)
定桨距鼠笼式感应异步风机的模型
Just the same as conventional induction generators
与传统异步发电机模型相同
3.2 Models of Wind Turbines
风电机组并网分析模型
 Wind Turbine Models in PSASP and PSD-BPA
A Common Models for Both DFIG and PMSG (Type III & Type IV)
一种双馈/直驱风电机组通用模型
• Based on GE Wind turbine model. (基于GE风电机组模型)
• A controllable current source is used to model the generator and
converter.采用受控电流源描述机网接口
• The Model of PWM converter and protection system is simplified.
对PMW变换器、保护系统模型进行了简化
3.2 Models of Wind Turbines
风电机组并网分析模型
 Wind Turbine Models in PowerFactory
Model for doubly feed asynchronous induction wind turbine Generator (TYPE III)
变桨距双馈异步感应风力发电机组的模型
• A relatively detailed induction generator and
PWM model is adopted
采用相对详细的发电机和PWM变换器模型
• Detailed control and protection system
详细的控制和保护系统模型
• May be too complex for RMS simulation.
对于机电暂态(有效值)或许过于复杂
3.2 Models of Wind Turbines
风电机组并网分析模型
 Wind Turbine Generator Models in PowerFactory
Model for wind turbine generators with full rated converter (Type IV)
全功率变频器风电机组的模型
• The grid interface is modeled by static
generator, which is a common model for
generation system with power electronic
converter grid interface.
采用静态发电机(一种电力电子并网接口发
电系统的通用模型)代替变流器和发电机
• The turbine and the wind are note considered
in this model.
忽略了风轮机、风速模型
• Meet for short-term transient stability study
能够满足短期暂态稳定研究的需要
Content (目 录)
 Wind Power in China
中国风电情况
 Study on Grid Integration of Wind Power
风电并网研究
 Models and Tools for Grid integration study
风电并网研究的模型与工具
 Problem and Suggested Improvement
风电并网研究的不足与改进
4 Problem and Suggested Improvement
风电并网研究的不足与改进
 About the Models of wind power(关于风电的模型)
• How to construct a suitable model for different study
purpose? (如何针对不同的研究目的,建立合适的模型)
• Are the current models of wind turbine correct? Or can we
model different types of wind turbine by parameter
adjustment?
现有的风电模型是否准确,能否通过参数的调整使之适应不同型号的
风机?
• How to test or identify the model parameter of wind turbine?
(如何测试风电机组的模型参数)
• How to construct an aggregate model of a wind farm which
contains lots of wind turbines working at different state?
(如何建立一个风电场的聚合等值模型)
4 Problem and Suggested Improvement
风电并网研究的不足与改进
 About the method of grid integration study
关于风电并网研究的方法
• For planning stage grid-integration study, can we find out
potential risk such as cascaded wind turbine trip off at bulk
wind base, and electricity curtailment of a wind farm?
能否在规划阶段通过并网研究发现潜在的安全和经济性问题,诸如对
于大型风电基地连锁故障,可能的弃风?
• How to evaluate the risk of voltage and frequency stability
when bulk wind power integrated, for those problems we
need perform a mid-long term study.
如何评估大量风电接入后对系统电压稳定和频率稳定的影响,对于这
些问题,我们需要开展中长期的分析
报 告 结 束
Thanks!