Barcelona, 2011 - IFT UAM/CSIC: members
Download
Report
Transcript Barcelona, 2011 - IFT UAM/CSIC: members
Germán Sierra
Instituto de Física Teórica CSIC-UAM, Madrid
Talk at the 4Th GIQ Mini-workshop February 2011
-String theory
-Critical phenomena in 2D Statistical Mechanics
-Low D-strongly correlated systems in Condensed Matter
-Fractional quantum Hall effect
-Quantum information and entanglement
s-channel
t-channel
p1 p2 p3 p4
u-channel
s ( p1 p2 ) 2
t (p p )
1
Mandelstam variables
Scattering amplitude
2
3
u ( p1 p4 ) 2
A A(s,t,u)
( (s))( (t))
A(s,t)
( (s) (t))
dx x
(s)1
(1 x)(t )1
0
(s) s (0)
Regge trayectory
1
q
q
s-t duality
q
q
String action
dx ( ) 2
S particle d
Sstring
d
0,1,
D 1
dx ( , ) 2 dx ( , ) 2
d d d d
where D= space-time dimension
A(s,t) D x(, )e
Sstrin g
x ( , )
d e
i p1 x ( 1 ,)
1
d e
i p 4 x ( ,)
4
is a 1+1 field that satisfies the equations of motion
d 2
d 2
2 2 x ( , ) 0 x ( , ) x R ( ) x L ( )
d
d
Open
dx ( , )
1
0, 0, x ( , ) x p i n ei n cosn
d
n n
Closed
1
x (0, ) x (2 , ) x ( , ) x p i ( n e2i n ( ) n e2i n ( ) )
n n
Quantization
x , p i
, n
n
m
,
,
n m,0
, ,
, n
n
m
n m,0
, ,
n
,m 0
String=zero modes (x,p)+infinite number of harmonic oscillators
Vertex operators: insertions of particles on the world-sheet
(Fubini and Veneziano 1970)
i kx(0, )
i
n
i
k(x
p
)
i
n
:e
:expk n e e
expk n e
n1 n
n1 n
The energy-momentum tensor
Generator of motions on the string world-sheet
Tab ( , ) (a,b 0,1)
T is a symmetric, conserved and traceless tensor
T T ,
ab
ba
aTab 0, ab Tab 0
For closed string T splits into left and right components
In light cone variables
1
, ( )
2
1
T (T00 T01 ) x x
2
1
T
(T00 T01 ) x x
2
Virasoro operators
Make the Wick rotation
, z i, z i
Fourier expansion of the energy momentum tensor
T Tzz (z)
L
n2
z
n
n
T Tz z (z )
L
n2
z
n
n
Where Ln , Ln (n Z) are called the Virasoro operators
Ln
1
1
,
L
nm m ,
nm m
n
2 m
2 m
Virasoro algebra
The Virasoro operators satisfy the algebra
Ln ,Lm (n m) Ln m
c 3
(n n)n m,0
12
where c = central charge of the Virasoro algebra
Classical version of the Virasoro algebra
n
,
m
(n m)
n m
,
n
z
n 1
z
This contains the conformal transformations of the plane:
1
z
translations
0
z z
dilatations
2
z
z
1
special conformal
z z
az b
,
cz d
ad bc 1
In 2D the conformal group is infinite dimensional !!
(n Z)
Ln (n Z)
n
Classical generators of conformal transformations
Quantum generators of conformal transformations
“c” represents an anomaly of conformal transformations
Physical meaning of “c”
Bosonic string: X-fields + Faddev-Popov ghost
c =
D
- 26
Superstring: X-fields + fermionic fields + Faddev Popov ghost
c = D
+ D/2
- 26 + 11 = 3D/2 -15
String theory does not have a conformal anomaly!!
c = 0 -> D = 26 (bosonic string) and 10 (superstring)
c gives a measure of the total degrees of freedom in CFT
c= 1 (boson)
c= 1/2 (Majorana fermion/Ising model)
c= 1 (Dirac fermion/1D fermion)
c= 3/2 (boson+Majorana or 3 Majoranas)
c=….
Fractional values of c reflect highly non perturbative effects
The Belavin-Polyakov-Zamolodchikov (1984)
Infinite conformal symmetry in two-dimensional quantum field theory
Conformal transformations
z w f (z),
z w f (z )
Covariant tensors are characterized by two numbers
h, h
Conformal weights
(w,w)(dw)h (dw)h
hh (z,z )(dz)h (dz)h hh
A (x)dx A( x)dx Az (z)dz (h 1,h 0) Az (z )dz (h 0,h 1)
Dilation
zz
wwz,z, zz
wwzz (
(: :real
real) )
General framework of CFT
-T is a symmetric, conserved and traceless tensor
with central charges c c (no need of an action)
- There is a vacuum state |0> which satisfies
Ln 0
Ln 0 0,
n 1,0,1,2,
-There is an infinite number of conformal fields
in one-to-one correspondence with the states
(z,z )
lim ( , ) 0 limz0 (z,z ) 0
-There are special fields (and states) called primary satisfying
L0 h,h h h,h , L0 h,h h h,h
Ln h,h 0, Ln h,h 0, n 0
T (x)dx dx T ( x)dx dx Tzz (z) (dz)2 (h 2,h 0) Tz (z )dz (h 0,h 2)
-The remaing fields form towers obtained from the primary fields
acting with the Virasoro operators (they are called descendants)
L0
h
h 1
h
L1 h
Verma
module:
L21 h ,L2 h
L31 h ,L1L2 h ,L3 h
i
h2
h3
-The primary fields form a close operator product expansion algebra
For chiral (holomorphic
fields)
OPE
k
i (z) j (w)
hi h j hk
k (w)
(z w)
c /2
2T(w) T(w)
T(z) T(w)
4
2
(z w)
(z w) (z w)
k
j
Cijk
constants
- Fusion rules (generalized Clebsch-Gordan decomposition)
a b Nabc k , Nabc 0,1,
k
- Rational Conformal Field Theories (RCFT): finite nº primary fields
-
Minimal models
c 1
6
, m 3,4,
m(m 1)
(m 1)r m s
2
hr,s
4m(m 1)
1
, 1 r m, 1 s r
A well known case is the Ising model c=1/2 (m=3)
I 1,1 or 2,3,
h0 0
2,1 or 1,3, h 1/2
2,2 or 1,2, h 1/16
I
I
- Conformal invariance determines uniquely the 2 and 3-point correlators
i (z1 ) j (z2 )
i (z1 ) j (z2 ) k (z3 )
ij
normalization
hi h j
12
z
Cijk
hi h j hk
12
z
hi hk h j
13
z
z
h j hk hi
23
- Higher order chiral correlators: their number given by the fusion rules
Conformal blocks for the Ising model
Fusion rules
(I ) (I ) I 2 (2)
There are four conformal blocks:
FI (z1)
(z4 ) I 2
1/ 2
z
1/ 8
ab
z13 z24 z14 z23
z13 z24 z14 z23
1/ 2
ab
F (z1 )
(z4 ) 2
1/ 2
z
1/ 8
ab
1/ 2
ab
The non-chiral correlators (the ones in Stat Mech)
(z1,z1) (z4 ,z4 ) FI z1, z4 FI* z1, z4 F z1, z4 F* z1, z4
Must be invariant under
Braiding of coordinates
z1
z2
z3
z4
Conformal blocks give a representation of the Braid group
Fp
zi zi1
B
p,q
Fq
zi1 zi
q
Yang-Baxter equation
Related to polynomials for knots and links, Chern-Simon theory,
Anyons, Topological Quantum Computation, etc
Characters and modular invariance
a
Conformal tower of a primary field
a ( ) TrH qL c / 24 qc / 24 da (n)
0
a
n0
d a (n) : number of states at level n=0,1,2,…
q ei ,
Upper half of the complex plane
Moduli
parameter of the torus
0
1
1
states propagation
Modular group
Fundamental region
a b a b
,
Sl(2,Z) :
c d c d
Generators
T : 1
S : 1/
Characters transforms under modular transformations as
a ( 1) e i(h
a c / 24 )
a ( )
a (1/ ) b Sab b ( )
Partition function of CFT must be modular invariant
L 0 c / 24 L 0 c / 24
Z(
)
Tr
q
q
M ab a ( ) a ()
H
a,b
Z( ) Z( 1) Z(1/ )
Verlinde formula (1988)
Fusion matrices and S-matrix and related!!
*
S
S
S
c
N ab
am bm cm
S1m
m
Example: Ising model
1
1
S 1
2
2
Check
N
1
1
2
2
2
0
I
2
2
1
2
2 01
4
Axiomatic of CFT
Moore and Seiberg (1988-89)
- Algebra: Chiral antichiral Virasoro left right ( c ) + others
- Representation: primary fields a ,
- Fusionrules:
c
N ab
ha ,ha
- B and F matrices : BBB
=BBB (Yang-Baxter) FF = FFF (pentagonal)
- Modular matrices T and S
Sort of generalization of group theory-> Quantum Groups
Wess-Zumino-Witten model (1971-1984)
CFT with “colour”
Field is an element of a Group manifold
SWZW
k
16
2
1
d
x
Tr
g g
Conformal invariance->
ik
24
g(z,z ) G
3
1 1 1 1 1 1
d
y
Tr
g
g g g gg
g(z,z ) f (z) f (z )
B
Currents
J a (z) k z g g1 J na zn1
n
J a (z ) k g1z g J na z n1
n
a 1, ,dimG
OPE of currents
k ab
J c (w)
J (z) J (w)
i f abc
2
(z w)
zw
c
a
b
Kac-Moody algebra (1967)
a
b
c
J
,J
i
f
J
n m abc n m k n ab n m,0
k= level (entero)
c
Sugawara construction (1967)
1
a
a
T(z)
J
(z)
J
(z)
2(k g) a
1
a
a
Ln
:
J
J
nm m :
2(k g) a m
c
k dimG
kg
g: dual Coxeter number of G
Primary fields and fusion rules (Gepner-Witten 1986)
1
k
j 0, , ,
2
2
G=SU(2)
j j
1
2
min j1 j 2 ,k j1 j 2
j
j j1 j 2
Knizhnik- Zamolodchikov equations (1984)
N
Si S j
(k g)
zi ji zi z j
j1 (z1 )
j (zN ) 0
N
Heisenberg-Bethe spin 1/2 chain
H Sn Sn 1
n
Low energy physics is described by the WZW SU(2)@k=1
Si S j (1)
i j
logi j
i j
But the spin 1 chain is not a CFT (Haldane 1983)
Si S j (1) i j e i j /
-> Haldane phase and gap
FQHE/CFT correspondence
Laughlin wave function
(z1, zN ) (zi z j ) m e
zk 2 / 4
i j
i
quasihole ->
(z)e 2
2
(z)
Basis for Topological Quantum
Computation
(braids -> gates)
electron =
(z)ei
2 (z)
The entanglement entropy in a bipartition A U B scales as
SA log
(1D area law)
In a critical system described by a CFT (periodic BCs)
c
SA logL c1
3
hence one needs very large matrices to describe critical systems
N ,
(c)
Another alternative is to choose infinite dimensional matrices:
MPS state
iMPS state
physical degrees
auxiliary space
(string like)
Example 5: level k=2, spins =1/2 and 1, D=2
SU(2)@2 = Boson + Ising
c=3/2 = 1 + 1/2
spin j=1 field
spin j=1/2 field
1,1(z) e
i (z)
, 1,0 (z) (z),
1/ 2,1/ 2 (z) (z)e
i (z)/ 2
1
h1 h
2
1
, h ,
16
3
h1/ 2
16
The chiral correlators can be obtained from those of the Ising model
(general formula Ardonne-Sierra 2010)
N spins 1
s1,, ,sN s i j zi z j
si s j
1
Pf0
z z
i
j
The Pfaffian comes from the correlator of Majorana fields
Similar chiral correlators have been considered in
the Fractional Quantum Hall effect at filling fraction 5/2.
This is the so called Pfaffian state due to Moore and Read.
FQHE/CFT correspondence
electron =
(z)e
i 2 (z)
i
quasihole ->
(z)e 2
2
(z)
Quasiholes are non abelian anyons because their wave
functions (chiral correlators) mix under braiding of their positions.
Computation
Basis for Topological Quantum
(braids -> gates)
An analogy via CFT
FQHE
CFT
Spin Models
Electron
Quasihole
Majorana
field
spin 1
spin 1/2
Braid of
quasiholes
Monodromy
of correlators
Adiabatic
change of H
Then if Holonomy = Monodromy one could get
Topological Quantum Computation in the FQHE and
the Spin Models.
Bibliography
Applied Conformal Field Theory
Paul Ginsparg,
arXiv:hep-th/9108028
Non-Abelian Anyons and Topological Quantum Computation
C. Nayak, S. H. Simon, A. Stern, M. Freedman, S. Das Sarma,
arXiv:0707.1889