中性子ラジオグラフィを用いた円管内沸騰二相流のボイド率定量評価

Download Report

Transcript 中性子ラジオグラフィを用いた円管内沸騰二相流のボイド率定量評価

Seminar on neutron imaging @KURRI
2011 / 01 / 06 - 07 (Thu.-Fri.)
中性子ラジオグラフィを用いた
円管内沸騰二相流のボイド率定量評価
Quantitative evaluation of void fraction
of boiling two-phase flow in a tube using neutron radiography
Thermal engineering Lab.,department of Science and Mechanical engineering,Kansai university
谷口 斉 (関大院)
Contents
1. Background and objective
2. Experimental apparatus
3. Image processing method
(Consideration of measurement error)
4. Experimental result
5. Summary
Background
Drop flow
Annular flow
Bubbly flow
Slug flow
Annular flow
Isothermal two-phase flow
Churn flow
流動様式の予測相関式
Slug flow
限界熱流束の予測(液膜流モデル)
Bubbly flow
・・・断熱二相流のデータを基本とする.
壁面沸騰,環状流液膜の蒸発は再現不能.
Boiling two-phase flow
J.G.Collier,J.R.Thome (1972)
Neutron radiography
Radiation
Source
I0
I
Detector
I  I 0 exp  m 
Mass attenuation2coefficient
m cm /g
・Scatter
・Absorption
・Transmission
103
X-ray(0.126 MeV)
Thermal neutron
102
Gd
H
B
Cd
101
H2O
100
Cl Ti
N
C
10-1
10-2
0
・測定対象に非接触
Fe
O
Na
F
Al
Hg
Ni
Cu
Ca Cr
Si
20
Ag Xe
Pr
Au
Pt Pb
U
I
Bi
40
60
Atomic number Z
80
100
・金属は透過し,水に対して強く減衰
⇒金属管内を流れる水の沸騰二相流の測定に適している.
Objective
中性子ラジオグラフィを用いて
沸騰二相流のボイド率定量評価,液膜測定に関する検討を行う.
Experimental apparatus(flow loop and test section)
Electrode
Experimental condition
ps
0.3 MPa
G
300,500,700 kg/m2s
xeq(outlet) (Liquid)~0.20
Working
fluid
Water
Electrode
Experimental apparatus(imaging system)
Neutron source
Beam port
Nuclear reactor
KUR(B4 port)
Thermal output
1 MW
Guide tube length 11.7 m
Guide tube
cross section
10(D)×75(D’) mm
o
Typical spectrum 1.2 A
Neutron flux
1×107 n/cm2s
Flame
for test loop
Pit
(Depth=1.0 m)
Camera box
Experimental apparatus(imaging system)
Camera
CCD camera “PIXIS 1024B”
(Princeton Instruments)
7.0 mm
Test section
Thermocouple
Imaging array 1024×1024 pixels
Lens “APO MACRO 180mm F3.5”
(SIGMA corporation)
Teleconverter
“APO TELECONVERTER 2x EX DG”
(SIGMA corporation)
31.7 mm
(1024 pixel)
Reproduction ratio 2x that of master lens
Converter
“ZNSL-L100-AL1016”
(CHICHIBU FUJI co., ltd.)
Spatial resolution
Exposure
0.030 mm
30 s
31.7 mm
(1024 pixel)
I  I 0 exp  m 
Image processing method
S L x, y   G  x, y  exp  w  mw w   L  m L L   Ox, y 
SG x, y   G  x, y  exp  w  mw w   Ox, y 
STP x, y   G x, y  exp  w  mw w  1   x, y  L  m L L  Ox, y 
S:輝度値,G:ゲイン,O:オフセット
 STP x, y   O x, y  

ln
S L  x, y   O  x, y  

  x, y  
 S G  x, y   O  x, y  

ln
 S L  x, y   O  x, y  
w L
ボイド率 
G
液相透過厚さ と
気相透過厚さの比
Measurement error
Reactor 1MW
Exposure 30 s
(1)Scattered neutron
Direct shadow
method
Grid
Grid
Object
Converter
Grid
Test section
Converter
Nondestructive Testing and Evaluation Vol.16, pp.345-354
N. Takenaka ; H. Asano ; T. Fujii ; M. Matsubayashi
2000
Measurement error
(1)Scattered neutron
0
-4
0
1
x mm
compensated
Non
Direct shadow
method
Grid
-2
-1
8000
Air only
Liquid only
Object
S x, y   Ox, y c  S x, y   S x, y     S x, y   
Converter
2
Gray level
Gray level
8000
6000
Grid
6000
4000
4000
2000
2000
0
-4
0
-4
100
Without teleconverter
-3
-3
-2
-2
Compensated
-1
0
1
-1 x 0 mm1
x mm
2
2
3
3
4
4
8000
Air only
Liquid only
6000
Gray level
Attenuation ratio(SL/SG)
-3
Reactor 1MW
2
3
4
Exposure
30 s
non compensated value
compensated value
10-1
0
1
2
L
3
4
mm
Nondestructive Testing and Evaluation Vol.16, pp.345-354
N. Takenaka ; H. Asano ; T. Fujii ; M. Matsubayashi
4000
2000
5
6
0
-4
Without teleconverter
-3
-2
-1
0
1
x mm
2
3
4
Measurement error
Reactor 1MW
(2)Gray
scale
4000
Gray level
"Gas only"-"Liquid only"
3500
3000
2500
2000
1500
1000
500
0
S
-4 G -3
・Dynamic range ⇒ 透過方向の分解能
-
-2
=
SL0
-1
x
1
・輝度は整数しか取れない
⇒測定誤差となる.
Dynamic
2
3
4range
mm
100
Dynamic range = 500
Dynamic range = 1000
Dynamic range = 3200
%
4000
Without teleconverter
3500
3000
2500
2000
1500
1000
500
0
-4 -3 -2 -1 0
1
x mm
80
Measurement error
Gray level
Exposure 0.1 s
Exposure 5 s
Exposure "Gas
10 s only"-"Liquid
Exposure 30
s
only"
60 0.1 s
Exposure
Exposure 5 s
40 10 s
Exposure
Exposure 30 s
20
2
3
4
0 -3
10
10-2
10-1
L mm
100
101
Measurement error
(3)Geometric unsharpness(Vertical)
Vertical
D
L=4675mm
L’=25mm
Ig’
D’
D’
Beam port
Beam port
L'
L'
Ig 
 D
L/ D L
縦方向 Ig’= 0.401 mm
(D’=75 mm,L/D’=62.3)
Test section
Converter
Measurement error
Reactor 1MW
Exposure 30 s
(3)Geometric unsharpness(Horizontal)
Without slit(D=10 mm)
L=4675mm
With Slit(D=2.5 mm)
L’=25mm
L=4675mm
Ig
D
Beam port
Test section
Converter
Ig = 0.054 mm
L’=25mm
Ig’
D
Beam port
Test section
Converter
LiF
Ig = 0.013 mm
・L/Dを上げることでボケを低減し
平行度を上げることで(照射時間
は長くなるが)Dynamic rangeを上げる.
Without slit
With slit
Measurement error
Reactor 1MW
Exposure 30 s
(3)Geometric unsharpness(Horizontal)
Without slit(D=10 mm)
L=4675mm
With Slit(D=2.5 mm)
L’=25mm
Ig
D
Beam port
Test section
Ig’
D
Converter
Ig’ = 0.013 mm
Gray level
With slit
Test section
Beam port
Converter
Ig = 0.054 mm
Without slit
L’=25mm
L=4675mm
900
800
700
600
500
400
300
200
100
0
-4
Air only
Liquid only
With teleconverter
without slit
Without slit : 500
With slit : 120
with slit(2.5mm)
-3
-2
-1
0
1
x mm
2
3
4
Experimental result
Discussion point
□ NRG using high-speed camera in KUR
□ Development of void fraction
□ Point of net vapor generation(PNVG)
□ Application to measurement of liquid film thickness
Experimental result
Isothermal two-phase flow(Slug flow)
(Reactor 5 MW)
Shading correction
jG = 0.40 m/s
jL = 0.23 m/s
2000 fps
500 fps
(Playback speed:1/5)
200 fps
100 fps
Experimental result
Reactor 1MW
Exposure 30 s
Boiling two-phase flow
(Static image)
Void fraction
ps = 0.3 MPa G = 300 kg/m2s
-0.110
-0.023
-0.009
0.00
-0.002
xeq (middle)
0.004
1.00
0.050
0.165
a
Experimental
0.4 result
0.2
Time averaged void fraction(cross sectional
average) z=125 mm
0
xeq0.15= Constant
-0.15 -0.1 -0.05 0
0.05 0.1
(Effect of vertical position)
x
1
ave
0.8
eq
ps=0.3 MPa G=500 kg/m2s
Sekoguchi(1980)
Bowring(1967)
Drift flux model
PNVG
0.6
1
0.4
0.8
0.2
ave
0.8
0
xeq
0.05
0.1
0.15
Sekoguchi(1980)
Bowring(1967)
2
ps=0.3
Drift
fluxMPa
modelG=500 kg/m s
PNVG
PNVG
0.6
0.4
0.2
z=275 mm
0
-0.15 -0.1 -0.05
0
xeq
0.05
Sekoguchi(1980)
0.6
0.4
0.2
z=125 mm
0
-0.15 -0.1 -0.05
ave
z=370 mm
0
-0.15 -0.1 -0.05
1
ps=0.3 MPa G=500 kg/m2s
0
xeq
0.05
0.1
0.15
0.1
0.15
下流側に比べて
Bowring(1967)
Drift flux model
沸騰開始点のx
eqが高い.
⇒気泡の発達や合体に伴う
ボイド率の上昇が少ない.
0
-0.15
-0.1
-0.05
0 result
0.05
Experimental
x
eq
Time averaged void fraction(cross sectional average)
Sekoguchi(1980)
Bowring(1962)
(Estimation of PNVG)
Drift flux model
0.7
ps = 0.3 MPa G=500 kg/m2s q = 500 kW/m2
0.6
ave
0.5
PNVG
(Bowring)
0.4
0.3
PNVG
(Sekoguchi)
0.2
PNVG
(Saha-Zuber)
0.1
0
-0.15
-0.1
-0.05
xeq
0
2
○低熱流束条件
・PNVGはSekoguchiによる推算式が
ln y=a + b x
近い値.
a=-5.85452263e-01
b=6.43260764e+01
・PNVG以降のボイド率の発達
3.22313656e-01
|r|=9.79487812e-01
⇒加熱部出口付近については
Drift flux modelがよく一致.
0.05
2
ps = 0.3 MPa G=500 kg/m s q = 900 kW/m
ave
q = Constant
1
0.9
0.8
PNVG
y=Σan xn
Sekoguchi(1980)
0.7
(Bowring)
a0=3.14922733e-01
○高熱流束条件
Bowring(1962)
0.6
a1=7.47602227e+00
Drift flux model
0.5
・PNVG以降のボイド率の発達
a2=1.49994969e+01
0.4 PNVG
a3=-3.68705622e+02
(Sekoguchi)
⇒どの相関式も定量的には不一致.
2.36593801e-02
0.3
PNVG
|r|=9.97700419e-01
0.2
(Saha-Zuber)
0.1
0
-0.15 -0.1 -0.05 0
0.05 0.1 0.15
xeq
Experimental result
Time averaged liquid phase thickness
(Center of the tube)
ps=0.3 MPa G=300 kg/m2s
3
z=370 mm
z=275 mm
z=125 mm
管中心のボイド率
⇒液相透過厚さ
L
mm
2.5
2
1.5
Tube radius
1
0.5
0
-0.15 -0.1 -0.05
0.05 0.1 0.15 0.2
xeq
ps=0.3 MPa G=300 kg/m2s
1
mm
Onset of
annular flow
(Wallis)
z=370 mm
z=275 mm
z=125 mm
Film flow model
0.5
L
環状流中の液相
⇒液膜と液滴
液膜厚さ測定への応用
0
0
0
0.05
0.1
xeq
0.15
0.2
Summary
中性子ラジオグラフィを用いて沸騰二相流のボイド率測定を行い以下の結論を得た.
・熱出力5MW運転時において高速度カメラを用いて流れを撮影したところ,500fps
程度の撮影速度以上で定性的な評価を見込める動画が得られることを確認した.
・同じ熱流束条件において軸方向にボイド率分布を測定することで,PNVGの推定を
行ったところ,PNVG自体は既存の相関式と近い値を示すが,PNVG以降のボイド率
の発達の仕方について,従来の相関式と異なる特性を示した.
・沸騰流中の液相透過厚さを計測することで,液膜あるいは液滴の計測に応用が
可能であると考えられる.