Transcript Document

Bogoliubov-de Gennes Study of Trapped Fermi Gases

Han Pu Rice University

(INT, Seattle, 4/14/2011) Randy Hulet Carlos Bolech Leslie Baksmaty Hong Lu Lei Jiang

Imbalanced Fermi mixtures

Fulde-Ferrel-Larkin-Ovchinnikov instability

• BCS Cooper pairs have zero momentum • Population imbalance leads to finite-momentum pairs • FFLO instability results in textured states

Experiments on spin-imbalanced Fermi gas

• Rice (Hulet Group) – Science

311

, 503 (2006) – PRL

97

, 190407 (2006) – Nuclear Phys. A

790

, 88c (2007) – J. Low. Temp. Phys.

148

, 323 (2007) – Nature

467

, 567 (2010) • MIT (Ketterle Group) – Science

311

, 492 (2006) – Nature

442

, 54 (2006) – PRL

97

, 030401 (2006) – Science

316

, 867 (2007) – Nature

451

, 689 (2008) • ENS (Salomon Group) – PRL

103

, 170402 (2009)

Observation: Phase separation

MW. Zwierlein, A. Schirotzek, C.H. Schunck, and W, Ketterle: Science 311, 492-496 (2006) Superfluid core with polarized halo

Experimental results

n ↑ n ↓ n ↑ n ↓ Hulet High T Ketterle Salomon Low T MIT/Paris data are consistent with Local Density Approximation (LDA) Rice data (low T) strongly violates LDA.

Surface Tension

• Phase Coexistence -> Surface Tension

1 mm 60 m m Aspect Ratio of Cloud: 50:1 Aspect Ratio of Superfluid: 5:1 Data: Hulet Surface tension causes density distortion Effects of surface tension more important in smaller sample.

Breakdown of LDA

P=0.14

P=0.53

P

N

N

  

N

N

 LDA LDA + surface tension P=0.72

De Silva, Mueller, PRL 97, 070402 (2006) Data points from Rice experiment.

Surface tension

2 2

m n s

4/3 Optimal value that fits data:  : 3 ~ 4 However, from microscopic theoretical calculation:  : 0.15

PRA 79, 063628 (2009)

Solving BdG equations

H

s

2   1 2

m

 

r

2 2

r

 

z

2

z

2  Choose

T

and

N

 take initial guesses of m  ,  

r

diagonalize the matrix   

H s

   * m  

H

s

  m     adjust m  compute new until:

N

    ( ) until the input and output m  ,  

r

Effect of trap anisotropy: N=200, P=0.4

2.5

2.0

1.5

1.0

0.5

Density along z-axis 2.0

1.5

1.0

0.5

0.2 0.4 0.6 0.8 1.0 1.2 1.4

z  Z TF 0.2 0.4 0.6 0.8 1.0 1.2 1.4

z  Z TF 2.0

1.5

1.0

0.5

2.5

2.0

1.5

1.0

0.5

Density along r-axis 2.0

1.5

1.0

0.5

0.2 0.4 0.6 0.8 1.0 1.2 1.4

r  Z TF 0.05 0.10 0.15 0.20 0.25 0.30

r  Z TF 2.0

1.5

1.0

0.5

0.2

0.4

0.6

0.8

1.0

z  Z TF 0.008

0.016

0.024

r  Z TF 1.0

0.8

0.6

0.4

0.2

Gap along z-axis 0.2 0.4 0.6 0.8 1.0 1.2 1.4

z  Z TF AR=1 0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0 1.2 1.4

z  Z TF AR=5 0.8

0.6

0.4

0.2

0.2

0.4

0.6

0.8

1.0

z  Z TF AR=50

Quasi-1D system: N=200, AR=50

2.0

1.5

1.0

0.5

2.0

1.5

1.0

0.5

Density along z-axis

0.2

0.4

0.6

0.8

1.0

z  Z TF 2.0

1.5

1.0

0.5

0.2

0.4

0.6

0.8

1.0

z  Z TF 2.0

1.5

1.0

0.5

0.2

0.4

0.6

0.8

1.0

z  Z TF

Density along r-axis

0.008

0.016

0.024

r

 Z TF 2.0

1.5

1.0

0.5

0.008

0.016

0.024

r

 Z TF 2.0

1.5

1.0

0.5

0.008

0.016

0.024

r

 Z TF 0.8

0.6

0.4

0.2

Gap along z-axis

0.2

0.4

0.6

0.8

1.0

z  Z TF

P=0.2

0.8

0.6

0.4

0.2

0.2

0.4

0.6

0.8

1.0

z  Z TF

P=0.4

0.5

0.2

0.4

0.6

0.8

1.0

z  Z TF

P=0.7

BdG vs. LDA: N=200, AR=50, P=0.6

Gap along z-axis Gap along r-axis n ↑ n ↓ n ↑ n ↓

N

~200,000

Going to higher N

BdG equation is very nonlinear, it may support many stationary states.

Complicated energy landscape For large N, starting from different initial configurations, the BdG solver may converge to different final states.

3 classes of states

NN SF LO

Density profiles (N=50,000)

SF LO Increasing energy NN

Upclose on the LO state

n ↓ n ↑

Robustness of the density oscillation

Bulgac and Forbes, PRL

101

, 215301 (2008) Pei, Dukelsky and Nazarewicz, PRA

82

, 021603 (2010)

FFLO in 1D

homogeneous trapped Orso, PRL (2007); Hu

et al.

, PRL (2007)

Experiment in 1D (Hulet group)

Liao

et al

., Nature

467

, 567 (2010)

3D 3D

Dimensional crossover: 3D – 1D

t X t 1D 1D

Model for single impurity in Fermi superfluidity

H

H

0 

H imp H imp

    

drU

U

U

      H 0 is BCS mean field Hamiltonian 

u

  

u

for contact potential a

1 

e

x a

2 2

for gaussian potential u

 :

impurity strength

:

u

 

u

 .

Magnetic impurity

:

u

  

u

 .

BdG and T matrix methods BdG

method gives numerical results for single impurity in harmonic trap. BdG solves self-consistently a set of coupled equations

Eu

 (

r

)   (

k

)

u

 (

r

) 

i

 

y



v

 (

r

) 

U

 (

r

)

u

 (

r

),

Ev

 (

r

)    (

k

)

v

 (

r

) 

i

 

y



u

 (

r

) 

U

 (

r

)

v

 (

r

)

T-matrix

gives exact solutions for localized contact impurity without trap.

G

(

k

,

k

' ;

w

) 

G

0 (

k

;

w

)  (

k

k

' ) 

G

0 (

k

;

w

)

T

(

w

)

G

0 (

k

' ;

w

) Contact potential: T matrix only depends on energy.

Localized non-magnetic impurity in 1D trap BdG

results with impurity without impurity

T matrix

results Bound state occurs when T -1 (w)=0

E

0   ( m 

mu

0 2 ) 2 2  2   2

u

u

0  

u

 

u

0  0 .

02

E F

 0

z TF

Localized magnetic impurity

u

  

u

 

u

0  0

BdG

results

T matrix

results Bound state energy inside the gap  0 

E

0  0  1  1  ( (

u

0 

N u

0 

N

0 0 This bound state is below the bottom of quasiparticle band.

/ 2 ) 2 / 2 ) 2

Density and gap profiles for localized magnetic impurity

Spin up Spin down What if we increase impurity width and strength

?

Magnetic impurity induced FFLO state

Impurity: Gaussian potential Spin up Spin down

u

0

a

   0 .

12 0 .

2

z TF

,  0 .

4 ,  1 .

0

E F z TF

Magnetic impurity induced FFLO state (3D)

Conclusion

• Two component Fermi gas offers very rich physics.

• Effects of trapping confinement.

• Flexibility of atomic system provides opportunities of studying exotic pairing mechanisms.

References

“Concomitant modulated superfluidity in polarized Fermi gases”,

Phys. Rev. A

83

023604 (2011) •

“Single impurity in ultracold Fermi superfluids”,

arXiv:1010.3222

“Bogoliuvob-de Gennes study of trapped spin-imbalanced unitary Fermi gases”,

arXiv:1104.2006