Transcript Part 1

CVA Summer School 2010 - Roma July 8, 2011

LIQUID ROCKET PROPULSION

1

Christophe ROTHMUND SNECMA – Space Engines Division [email protected]

CONTENTS

Part 1 : LIQUID ROCKET ENGINES Part 2 : NEAR TERM PROPULSION SYSTEMS Part 3 : ELECTRIC PROPULSION Part 1 : LIQUID ROCKET ENGINES Part 2 : ANATOMY OF A ROCKET ENGINE Part 5 : ADVANCED PROPULSION Part 4 : NUCLEAR PROPULSION

2

3

Part 1

LIQUID ROCKET ENGINES

LIQUID ROCKET ENGINE TYPES

4 NUCLEAR THERMAL

FUEL NUCLEAR REACTOR

SOLID GRAIN

LIQUID PROPELLANTS

MONOPROPELLANTS :

Hydrazine, Hydrogen peroxyde

BIPROPELLANTS :

FUELS : Kerosine, ethanol Liquid hydrogen, UDMH, MMH, Hydrazine

5

OXIDIZERS : Liquid oxygen, N2O4, Hydrogen peroxyde

HYBRID PROPELLANTS

liquid propellant : oxidizer - solid propellant : fuel (solid oxidizers are problematic and lower performing than liquid oxidizers) oxidizers : gaseous or liquid oxygen nitrous oxide.

fuels : polymers (e.g.polyethylene), cross-linked rubber (e.g.HTPB), liquefying fuels (e.g. paraffin).

Solid fuels (HTPB or paraffin) allow for the incorporation of high energy fuel additives (e.g.aluminium).

6

CHEMICAL REACTIONS

BIPROPELLANTS

Dimethylhydrazine (UDMH) : H2N – N (CH3)2 (l)+ 2 N2O4 (l) - > 3 N2 (g) + 4 H2O (g) + 2 CO2 (g) Hydrazine hydrate (N2H4,H2O) : 2 (N2H4,H2O) (l) + N2O4 (l) - > 3 N2 (g) + 6 H2O (g) Monomethylhydrazine (MMH) : 4 H2N – NHCH3 (l) + 5 N2O4 (l) - > 9 N2 (g) + 12 H2O (g) + 4 CO2 (g) Kerosene (CH2 is the approximate formula ) with hydrogen peroxide : CH2 + 3H2O2 → CO2 + 4H2O Kerosene and liquid oxygen (LOX) CH2 + 1.5O2

→ CO2 + H2O Hydrogen and oxygen (liquids) : 2 H2 (g)+ O2 (g) - > 2 H2O (g)

MONOPROPELLANTS Hydrogen peroxyde (H2O2)

H2O2 (l) - > H2O (l) + 1/2 O2 (g)

Hydrazine (N2H4)

N2H4 (l) - > N2 (g) + 2 H2 (g)

7

8

Specific impulse of various propulsion technologies Engine type Jet engine Solid rocket Bipropellant rocket Ion thruster VASIMR Specific impulse 300 s 250 s 450 s 3000 s 30000 s

9

PROPULSION BASICS

Pressure-fed cycle

Pros :

-

Simplicity

-

Low complexity

-

Cons :

-

Low performance

-Oldest and simplest cycle, -Rarely used nowadays on launch vehicles, Powered France’s Launch vehicle family Diamant.

10

Gas-generator cycle

Pros :

-

Higher presssures

-

Lowerturbine temperatures

-

Highest performance

-

Cons :

-

Moderate performance

-Most widely used cycle in the western world,

11

Preburner cycle

Pros :

-

Higher presssures

-

Lowerturbine temperatures

-

Highest performance

-

Cons :

-

High complexity

-Used on the Shuttle and the H-2A main engine

12

Expander cycle

Pros :

-

Thermally challenging

-

Highest performance

-

Cons :

-

For cryogenic engines only

-

Limited power therefore not suited for high thrusts

-Oldest cryogenic engine in service (RL-10) -Used in Japan and Europe

13

Full flow staged combustion rocket cycle

Pros :

-

Higher presssures

-

Lowerturbine temperatures

-

Highest performance

-

Cons :

-

Very high complexity

-Never flown, -Demonstration only (IPD) so far

Hybrid rocket cycle Pros :

-

Higher performance than solids

-

Lower complexity than liquids

14

Cons :

-

Lower performance than liquids

-

Higher complexity than solids

15

Nuclear thermal rocket cycle

Pros :

-

Highest performance

-

Cons :

-

Very high complexity

-

Radiations

-

Never flown,

-

Demonstration only so far

16

NOZZLES

THRUST CHAMBER ASSEMBLY

Chamber Characteristics: • Combustion • High pressure • High temperature • Very low net fluid velocity GIMBAL INJECTOR COMBUSTION CHAMBER Exit Characteristics: • Flow expands to fill enlarged volume • Reduced pressure • Reduced temperature • Very high fluid velocity NOZZLE EXTENSION

17

18

Thrust chamber cooling methods

Nozzle design challenges Structural factors

• • • •

Physical

Weight, Center of Gravity Service Life

Running time, Number of starts Duty Cycle/Operating Range

Continuous operation at one power level

Throttled operation Materials

Compatibility

– –

Strength, Heat transfer capability Structural concerns

Loads

Testing

Altitude Simulation or Sea Level

Sideloads

Flight

Lift off, shut down, restart

Sideloads

• •

Transportation Temperature

19 June 16, 1997

KEY REQUIREMENTS FOR SAFE NOZZLE OPERATION

Sea level :

- stable operation on ground

-

high performance

Vacuum :

- high vacuum performance - low package volume

Bell nozzle

Advanced concepts with altitude adaptation

Dual-bell nozzle

20

Extendible nozzle Plug nozzle (“Aerospike”)

• • •

Nozzle Types Conical Nozzle

Simple cone shape - easy to fabricate

Rarely used on modern rockets Bell Nozzle

Bell shape reduces divergence loss over a similar length conical nozzle

Allows shorter nozzles to be used Annular Nozzles (spike or pug)

Altitude compensating nozzle

Aerospike is a spike nozzle that uses a secondary gas bleed to “fill out” the truncated portion of the spike nozzle

21

22

Nozzle extension cooling systems Laser welded jacket to liner Brazed tubes inside jacket Brazed jacket to liner Materials : stainless steel, copper, nickel, copper/nickel

AEROSPIKE NOZZLES

Linear aerospike Rocketdyne XRS-2200 Rocketdyne AMPS-1 1960’s Annular aerospike

23

World’s first aerospike flight, September 20, 2003 (California State Univ. Long Beach)

24

Part 2

ANATOMY OF A ROCKET ENGINE

1 – Gas generator cycle : F-1 and Vulcain engines 2 – Staged combustion cycle : SSME 3 – Expander cycle : Vinci 4 – Linear aerospike XRS2200 5 – Nuclear : NERVA/RIFT

25

Rocketdyne F-1

26

Engine flow diagram Rocketdyne F-1

Engine characteristics Rocketdyne F-1

27

Thrust (sea level): Burn time: Specific impulse: Engine weight dry: Engine weight burnout: Height: Diameter: Exit to throat ratio: Propellants: Mixture ratio:

Apollo 4, 6, and 8

6.67 MN 150 s 260 s 8.353 t 9.115 t 5.79 m 3.76 m 16 to 1 LOX & RP-1 2.27:1 oxidizer to fuel

Apollo 9 on

6.77 MN 165s 263 s 8.391 t 9.153 t

28

Engine components Rocketdyne F-1

29

TESTS AND LAUNCHES

30

VULCAIN 2

31

VULCAIN 1 TO VULCAIN 2 EVOLUTION

32

Engine characteristics Vacuum thrust Mixture ratio Vacuum impulse Dry weight specific Chamber pressure Expansion ratio Design life Vulcain 1 1140 kN 4,9 to 5,3 430 s 1680 kg 110 bar 45 6000 s 20 starts Vulcain 2 1350 kN 6,13 434 s 2040 kg 116 bar 60 5400 s 20 starts VULCAIN 2

33

Vulcain 2 Flow diagram VULCAIN 2

34

Thrust chamber VULCAIN 2

Hydrogen turbopump VULCAIN 2

35

34200 rpm, 11,3 MW

Oxygen turbopump VULCAIN 2

36

13300 rpm, 2,9 MW

37

Space Shuttle Main Engine

Propellants Vacuum thrust at 109 % Mixture ratio Vacuum specific impulse Dry weight Chamber pressure Expansion ratio Throttle range Design life

38

Engine characteristics SSME LOX – LH2 2279 kN 6 452 s 3527 kg 206,4 bar 69 67 % - 109 % 7,5 hours 55 starts SSME

2,07 bar SSME Flow schematic 6,9 bar 190,3 bar 511,6 bar SSME 29,1 bar 206,4 bar 296,5 bar 450 bar

39

Hydrogen

40

SSME Powerhead

Fuel Preburner Oxidizer Preburner

SSME

Main chamber

Oxygen

41

F1 vs. SSME test comparison SSME Last Planned SSME Test : July 29, 2009 Duration : 520 sec, NASA Stennis

42

VINCI

43

FLOW DIAGRAM VINCI

Engine characteristics VINCI

44

Propellants Vacuum thrust Mixture ratio Vacuum specific impulse Chamber pressure Expansion ratio Vinci LOX – LH2 180 kN 5,80 465 s 60 bar 240

VINCI Hydrogen turbopump

45

46

Oxygen turbopump VINCI

47

Combustion chamber VINCI 122 co-axial injection elements 228 cooling channels

48

Nozzle extension VINCI

49

Vinci test facility with altitude simulation

TYPICAL SMALL ENGINES

MONOPROPELLANT BIPROPELLANT

Typical applications : Attitude control Roll control Soft landings (Moon, Mars, …)

50

51

SPACESHIPONE HYBRID ENGINE

52

AMROC (USA)

LIQUID ROCKET ENGINE TEST FACILITIES

53

54

Major elements of a test program

55

PF52 Vulcain powerpack test facility

Vulcain 1 – hydrogen TP test

56

Vinci test facility with altitude simulation

57

PF50 and P5 Vulcain engine test stands LOX Tank Engine

NASA A-3 J-2X altitude simulation engine test stand

58

Ø 7 m

simulated altitude : approximately 30 km

BEWARE OF HYDROGEN IMPURITIES… - Avoid risky configurations (e.g. low points, ...) - Define and integrate the cleansing constraints - Easily accessible equipment after commissioning, - Rapid reaction instrumentation (e.g. fast pressure sensors, ...)

59

60

HYBRID ENGINE TEST FACILITY

61

Part 4

NUCLEAR PROPULSION

INTEREST OF NUCLEAR THERMAL PROPULSION Energy !

→1 kg of fissionable material (U235) contains 10 000 000 times more energy, as 1 kg of chemical fuel.

Consequences :

-

Higher specific impulse - higher useful load fraction - No oxidizer required !

62

63

Nuclear - thermal propulsion

Size of 1972 Vintage 350 kN NERVA Engine

Isp = 888.3 s

F = 333.6 kN

Tc = 2700 K

m = 5.7 t

American nuclear rockets of the 1960’s Engine and reactor in Engine Test Stand One (Nevada Test Site)

64

KIWI A 1958-60 100 MW 1.125 kN KIWI B 1961-64 1000 MW 11.25 kN Phoebus 1 Phoebus 2 1965-66 1000 MW 11.25 kN 1967 50000 MW 56.25 kN

UPPER STAGE COMPARISON

65

Departure mass Dry mass Thrust Duration Isp Payload S-IV B 121.2 t 12.2 t 91 kN 475 s 4180 m/s 39 t NERVA 53.694 t 12.429 t 266.8 kN 1250 s 7840 m/s 54.5 t For Saturn V

66

NERVA ultimate goal : manned Mars flight

67

ANY QUESTIONS ?