RS-68 - Alternate Wars

Download Report

Transcript RS-68 - Alternate Wars

Propulsion for the
21st Century
- Cost Driven Design/Development/Delivery
Rocketdyne
CP2-12_5028-1
B1-043sh
RS-68 Operating Schematic
Main LOX
Inlet
Helium
Spin Line
Main Fuel
Inlet
GG
Oxid
Valve
GG
Fuel
Valve
Fuel Turbopump
Oxid
Turbopump
Gas Generator
(GG)
LOX Tank
Pressurization
Fuel
Tank
Repress
Main Fuel
Valve
Heat
Exchanger
Main
Oxid
Valve
Regen
Cooled
Chamber
Ablative Lined
Nozzle
Roll Control
Nozzle
Rocketdyne
CP2-12_5086-2
B1-043sh
RS-68 Operating Characteristics
Minimum
Power
Thrust, vac (KN)
(K kg-f/Klb-f)
Full
Power
3,341
341/751
Thrust, s/l (KN)
(K kg-f/Klb-f)
2,918
299/656
1,499
153/337
9.79
1,420
5.62
815
Chamber pressure (MPa)
(psia)
Engine mixture ratio
6.0
Isp, vacuum (sec)
409
Isp, sea level (sec)
357
1,922
197/432
Rocketdyne
CP2-12_5086-3
B1-043sh
RS-68 Engine
5.2M
LO2
Turbopump
Heat
Exchanger
Main Chamber
2.4M
Thrust Frame
LH2 Turbopump
Nozzle
Roll Control
Rocketdyne
CP2-12_5086-4
B1-043sh
RS-68 Components
Gas
Generator
Oxidizer
Turbopump
Fuel
Turbopump
Injector
Heat Exchanger
Fuel Exhaust
Gimbal Bearing
Ducts
Combustion
Chamber
Propellant Valves
Rocketdyne
Nozzle
CP2-12_5086-5
B1-043sh
CAIV Key Elements
Costs as the
Independent
Variable
(CAIV)
Integrated and
Product
Team Driven
Design to fabricate (unit cost)
• Single 3D design/analysis/fab model
• Minimize parts, welding & new mat’ls
• Fab process capability built in
• Won’t Fail Approach
• Electronic work instructions
Design to avoid failures (development cost)
• Simple - minimize pressure/cooling
• Mature technology
• Margin to experience
• Component/subsystem risk mitigation
Rocketdyne
CP2-12_5086-6
B1-043sh
Digital Driven Design Environment
Suppliers
Customers
Data Links
Interactive
Workstations
Rocketdyne
Virtual
Design
Single
Product Definition
Database
Associative
3-D
Master Model
CP2-12_5086-7
B1-043sh
RS-68 Desktop 3D Engine Design Model
Rocketdyne
CP2-12_5086-8
B1-043sh
RS-68 Virtual Design
Thermal
FEM
Design
Solid
Model
•Associative &
Interactive
•IPT Concurrence
Static
Dynamic
Thermal
Total
Rocketdyne
CP2-12_5086-9
B1-043sh
RS-68 Main Chamber Fabrication
 Hot Isostatic Pressure
bonding reduces cycle
time from 24 to 12 months
RS-68
Rocketdyne
SSME
Furnace
CP2-12_5086-10
B1-043sh
Turbomachinery Design Simplification
7
6
Blisks
Block II
SSME
Block II Fuel
SSME LOX
Cost ($M)
5
SSME
RS-68
4
RS-68 vs SSME
Castings
3
2
1
RS-68
LOX
RS-68
Fuel
0
0
50
100
150
200
250
Number of Unique Parts
(1 unique part = 1 drawing number)
Rocketdyne
CP2-12_5086-11
B1-043sh
$3.0
300
$2.5
250
$2.0
$1.5
$1.0
Corrective Actions
Cost of Corrective Actions, $B
Risk Quantification
UnknownUnknowns
200
KnownUnknowns
Rocketdyne
Historical
Data
150
100
$0.5
50
$0
0
Close to
Experience
0
RS-68
Assessment
0.5
0.8
Average Risk Factor
Rocketdyne
CP2-12_5086-12
B1-043sh
Mitigating “Identified” Risks
Gas Generator Tests
(SSFL)
Technology
Environment
Fabrication
Mean
Engine System
0.2
0.5
0.3
0.33
Fuel Turbopump
0.2
0.5
0.3
0.33
LOX Turbopump
0.2
0.5
0.3
0.33
Gas Generator
0.9
0.5
0.3
0.57
Main Chamber
0.5
0.5
0.6
Main Injector
0.8
0.2
0.3
0.43
Nozzle
0.7
0.5
0.2
0.47
Controls
0.7
0.5
0.2
0.47
Mean
0.53
0.46
0.31
0.44
IR&D
Electrochemical
Machining
0.53
S pecial Test/Demo nstrati on Com pl eted
BOEING PROPRIETARY
BOEING PROPRIETARY
Hot Isostatic
Pressure Bonding
RS-68 Design vs Experience (SSME)
Environments
60
50
45
Pressure
62
Req’d
Cooling
50
SSME
Pump
Speed
100
150
Turbine
Temp
Percent of SSME
150
Propellant Flowrate/Thrust
Injector stability Tests
(MSFC)
0
Key Operating Conditions
Rocketdyne
CP1-6-D021-19
RS-68 Technical Lessons Learned
Rocketdyne
Propulsion & Power
9912207.ppt
aw
CP2-12_5086-13
B1-043sh
Incremental Test Approach
Combustion Devices
Turbopump Assembly
Gas Generator
Add
Add
Powerpack
Testing
•
Turbopump Testing
Cold Gas Turbine Drive
Prototype Engine Testing
Rocketdyne
CP2-12_5086-14
B1-043sh
RS-68 Test Facilities
SSC B-1
B-1B
Development/Cert
AFRL 1-A
B-1A
Development/Cert
Production
Development / Limits Testing
Rocketdyne
CP2-12_5086-15
B1-043sh
Engine Test Program
Accumulative Pre-mature Cuts
due to engine anomaly
200
180
SSME Development ended
Certification started
160
First Flight
615 Tests
12 Major
Failures
140
120
100
80
60
RS-68 post
certification
40
No Major
Failures
183 Tests
20
0
0
100
200
300
400
500
600
700
800
Accumulative Number of Tests
Rocketdyne
CP2-12_5086-16
B1-043sh
RS-68 Development Issues Resolved
Fuel Tubopump
Oxidizer
Turbine Disc
Turbopump
Crack
Turbine
Disc/Blade
Cracks
Resolved
Resolved
Oxidizer Turbine Drive Duct Crack
High Nozzle Ablation Rate
Erosion (in)
Test max
Test avg
6
8
10
12
14
Area Ratio
Resolved
16
18
20
Model Prediction
Resolved
Rocketdyne
CP2-12_5086-17
B1-043sh
RS-68 Operational Margin
Demonstrated Range
Engine Thrust
51%
101
58
105%
Mixture Ratio
5.3
Fuel Turbopump
Speed, rpm
LOX Turbopump
Speed, rpm
Gas Generator
Temp (K)
6.0
8.5
13650
22472
5090
9686
567
989
Full Mission Power
Minimum Mission Power
Rocketdyne
CP2-12_5086-18
B1-043sh
RS-68 Endurance Margin
Total Starts
35
30
E10206
25
E10107
(CERT)
E10204
20
E10108
Endurance Requirement
15
E20001
(CERT)
Certification Requirement
10
Maximum Flight
5
0
0
500
1000
1500
2000
2500
3000
3500
4000
4500
Total Time, sec.
Rocketdyne
CP2-12_5086-19
B1-043sh
RS-68 Anchored Reliability
Methodology Overview
SSME
Historical
Data
Comparative
Design
Assessment
RS-68
Predicted
Data
Prediction Result
.0016
RS-68 vs. SSME
.0014
SSME
.0012
.0010
RS-68
.0008
SSME (Block II)
Demonstrated
Reliability = .9983
RS-68 reliability
Predicted =.9987
Based on 970,000 secs.
.0006
.0004
.0002
.0000
Propellant
Main
Feed
Combustion
Control
GG Assembly Exhaust
(Preburners
for SSME)
Ancillary
Gimbal
Rocketdyne
CP2-12_5086-20
B1-043sh
Non-Recurring Development Cost
(2001 Dollars)
3
2.5
2
$B
1.5
Fail
Fix
$2.15B
Fail
Fix
$1.52B
Fail
Fix
$2.18B
Basic
Prog.
$688M
Basic
Prog.
$490M
Basic
Prog.
$734M
Basic
Prog.
$344M
F-1
J-2
SSME
RS-68
1
Fail
Fix
$156M
0.5
0
Saturn/Apollo
1960s
Reusable
1970-1981
1997-2001
Rocketdyne
CP2-12_5086-21
B1-043sh
Test What You Fly
Rocketdyne
CP2-12_5086-22
B1-043sh
RS-68 Engine Assembly Facility
Rocketdyne
0012228.ppt
CP2-12_5086-23
mm
B1-043sh
RS-68: Ready to Fly!
Rocketdyne
CP2-12_5086-24
B1-043sh
RS-68 Summary
 First rocket engine designed
specifically for Low Cost
 Affordable space lift
 World-wide commercial
competitiveness
 U.S. Designed Using State-of-theArt Tools
 Fully tested & certified to fly
 U.S. Producibility cost unmatched
 A new generation: “Rocket Scientists”
Rocketdyne
CP2-12_5086-25
B1-043sh