Force Field of Biological System

Download Report

Transcript Force Field of Biological System

Force Field of Biological System
中国科学院理论物理研究所
张小虎
研究生院《分子建模与模拟导论》课堂
2009年10月21日
Why do we need force field?
1. Force Fields
•
•
•
•
•
Classical Newtonian Dynamics
Electrons are in the ground state
Force fields are approximate
Nonbonded force fields for biological systems are effective pair potentials
No Explicit term for hydrogen bonding
References
H. J. C. Berendsen, et al, Gromacs User Manual version 4.0
A. D. MacKerell, Jr. , et al, "Comparison of Protein Force Fields for
Molecular Dynamics Simulations“
A. D. Mackerell, Jr. , et al, "Empirical Force Fields for Biological
Macromolecules: Overview and Issues“
J. W. Ponder, et al, "FORCE FIELDS FOR PROTEIN SIMULATIONS“
Takao Yoda, et al, “Comparisons of force field for proteins by
generalized-ensemble simulations”
2. Commonly used force fields
• Amber: Assisted Model Building with Energy Refinement
• CHARMM: Chemistry at HARvard Macromolecular Mechanics
• OPLS-AA: Optimized Potentials for Liquid Simulations- All Atom
• GROMOS: GROningen MOlecular Simulation
References
W. D. Cornell, et al (1995) ”A second generation force field for the
simulation of proteins, nucleic acids, and organic molecules”
A. D. MacKerell, et al (1998) ”All-atom empirical potential for molecular
modeling and dynamics studies of proteins”
W. L. Jorgensen, et al (1996) ” Development and Testing of the OPLS
All-Atom Force Field on Conformational Energetics and Properties of
Organic Liquids”
C. Oostenbrink, et al (2004) “A biomolecular force field based on the
free enthalpy of hydration and solvation: The GROMOS force-field
parameter sets 53A5 and 53A6”
3. Functional forms
Basic functionals
Vtotal  Vbonded  Vnonbonded
Vbonded 
 K (b  b )
b
bonds
Vnonbonded
0
2

 K (  )
0
2
angles
  R
min,ij
    ij 
 rij
nonbonded 

pairs ij 
12



 Rmin,ij
  2* 

 rij
K  [1  cos(n   )]
dihedrals



6
 qq
 i j
 rij





4. Differences for bonded interactions
Valence Angles
•
•
•
•
AMBER:
k
2
CHARMM: + ( r  r 0 )
2
OPLS-AA:
GROMOS:
Improper Dihedral Angles
maintain chirality or planarity
Urey- Bradly angle term
•
•
•
•
AMBER: +
CHARMM: +
OPLS-AA: +
GROMOS: +
k (1  cos 2w)
k 2 / 2
k (1  cos 2w)
k 2 / 2
5. Differences for nonbonded interactions
 Handling of 1,4-nonbonded interactions between
A, D in dihedral A-B-C-D
•
•
•
•
AMBER:
CHARMM:
OPLS-AA:
GROMOS:
LJ ½ Coulomb 1/1.2
not scaling except some special pairs
LJ ½ Coulomb ½
case by case
6. How to construct a force field?
Adjusting parameter values until the force
field is able to reproduce a set of target data
to within a prescribed threshold
; name bond_type mass charge ptype sigma
epsilon
amber99_0 H0 0.0000 0.0000 A 2.47135e-01 6.56888e-02
amber99_1 BR 0.0000 0.0000 A 0.00000e+00 0.00000e+00
amber99_2 C
0.0000 0.0000 A 3.39967e-01 3.59824e-01
amber99_3 CA 0.0000 0.0000 A 3.39967e-01 3.59824e-01
amber99_4 CB 0.0000 0.0000 A 3.39967e-01 3.59824e-01
amber99_5 CC 0.0000 0.0000 A 3.39967e-01 3.59824e-01
amber99_6 CK 0.0000 0.0000 A 3.39967e-01 3.59824e-01
amber99_7 CM 0.0000 0.0000 A 3.39967e-01 3.59824e-01
Target data
 Experimental: vibrational spectra; heats of vaporization; densities;
solvation free energies; microwave, electron, or X-ray diffraction
structure; and relative conformational energies and barrier heights.
 QM: vibrational spectra; minimum energy geometries; dipole
moments; conformational energies and barrier heights; electrostatic
potentials; and dimerization energies
The Amber,
CHARMM, GROMOS, and OPLS-AA force field for
proteins each target a different subset of the possible experimental and
QM data, although there is substantial overlap between the subsets.
AMBER

AMBER84: Polar hydrogens + united atoms ( hydrogens bonded to
carbon)

AMBER86: All- atom model
• Based on experimental with gas phase simulation
• Key ideas:
 ESP
partial charge ( qi , qj )
 ( Kb , b0 , Ksita , Sita0 ) from crystal structures, match NMF for peptide
fragments
 VDW fits amide crystal data
 Dihedral match torsional barriers from experiments and quantum
calculations

AMBER94: Aimed to better perform Condensed phase simulations
• Partial charges:
 Dependency on environments: RESP
 Dependency on conformations: fit simultaneously with multiple
configurations
• More accurate electron correlation method and larger basis set to
determine torsional terms

AMBER96,99
• Account long-range effects
• Fit tetrapeptide + dipeptide

AMBER03
• More accurate electron correlation method and larger
basis set to determine torsional terms and partial charges
• Continuum solvent models instead of vacuum
CHARMM
Key
idea:
Balancing water-protein, water-water, and protein-protein interaction
energies in the condensed phase
Difference:
Dimerization
OPLS-AA
GROMOS
energies, molecule-water minimum-energy distances
6. Comparison of force field in realization
Favor
Alpha-helix: Amber 94, 99
Beta-hairpin: GROMOS96
Intermediate: CHARMM22, AMBER96, OPLS-AA/L
Experimental agreement
Alpha-helix:
• Remarkable agreement: Amber 99, CHARMM22
• Consistent with some experiments: AMBER96, OPLS-AA/L
• Disagreement: AMBER94, GROMOS96
Beta-hairpin:
• Remarkable agreement: OPLS-AA/L, GROMOS96
• Consistent with some experiments: AMBER96
• Disagreement: AMBER94, AMBER99, CHARMM22
THANK YOU