Transcript Ag nanoring

Exciton-plasmom interaction
and enhanced energy transfer
in active plasmonic nanosystem
Qu-Quan WANG
(王取泉)
[email protected]
Wuhan University
HK, May, 2010
Our interests:
semiconductor QDs
Optical
nanoemitters
(sources)
(quantum SWAP, dephasing, spin)
rare-earth NCs
(dopant-control phase, ET)
active
antenna
plasmonic
spaser
system
Metallic
nanostructures
(plasmons)
Ag nanorod
(nonlinear FOM)
Au nanowire
(avalanche MPL)
Ag nanoring
(focusing, SP amplification)
Au-Ag nanocomplex
(plasmon Fano resonances)
Outline
Brief introduction
一, 掺杂调控纳光子发射体的光学特性
1.1. Mn掺杂半导体量子点的光学特性
1.2. Ln掺杂调控NaYF4稀土纳米晶的晶相和上转换发射效率
二, 金属纳米结构中表面等离激元Fano干涉效应
2.1. Au-Ag异质纳米棒中双Fano共振效应
2.2. 明-暗等离激元能量转移与光调制效应
三, 金属表面等离激元与纳光子发射体相互作用
3.1. Ag纳米颗粒双频天线增强量子点之间非辐射能量转移
3.2. Ag纳米线阵列增强量子点之间辐射能量转移
3.3. Ag纳米环可控增强量子点发射与表面等离激元放大
Summary
* Brief introduction
Spaser from two nanosystems:
Dye molecule – Au nanoparticle
CdS nanorod – Ag thin film
Spaser from Au nanoparticles with dye molecules
M. A. Noginov et al., Nature 460, 1110 (2009).
The activators are dye nanoemitters
Spaser from Ag thin film with CdS nanowire
Rupert F. Oulton et al., doi:10.1038/nature08364
(2009)
The activator is CdS nanowire.
一, 掺杂调控纳光子发射体的光学特性
1.1 Mn掺杂半导体量子点的光学特性
1.2 Ln掺杂调控NaYF4稀土纳米晶的晶相和上转换发射效率
1.1. Mn掺杂半导体量子点的光学特性
ZnSe:Mn/CdSe反核壳量子点中激子极化和存储
ZnSe:Mn/CdSe
磁共振精细结构
(EPR)
ZnSe
Mn2+
|1
CdSe
Exciton
Mn2+ 4
|g
|0
T1
共振转移
PL
(Exciton)
Mn(2+) PL和激子PL
激发和发射谱的差别
4
T1
Mn(2+) PL和激子PL
发射动力学的差别
Mn增强
激子PL
强度
Mn延长
激子PL寿命
Appl. Phys. Lett. 96, 123104 (2010)
1.2.
Ln掺杂调控NaYF4稀土纳米晶的晶相
和上转换发射效率
我们的文章发表在Nano Research 1月份的封面上,优点是生物相容性
2月份Nature上也报道了调控晶相的文章,但没有生物相容性
Nano Res. 3, 51 (2010)
二, 金属纳米结构中表面等离激元Fano干涉效应
2.1. Au-Ag异质纳米棒中双Fano共振效应
2.2. 明-暗等离激元能量转移与光调制效应
2.1 Au-Ag异质纳米棒中双Fano共振效应
Energy transfer between Au and Ag
Au
Ag
692 nm
712 nm
786 nm
Appl. Phys. Lett. 96, 131113 (2010)
2.2 明-暗等离激元能量转移与光调制效应
Appl. Phys. Lett. 96, 043113 (2010)
三, 金属表面等离激元与纳光子发射体相互作用
3.1. Ag纳米颗粒双频天线增强量子点之间非辐射能量转移
3.2. Ag纳米线阵列增强量子点之间辐射能量转移
3.3. Ag纳米环可控增强量子点发射与表面等离激元放大
3.1. Plasmon-enhanced nonradiative ET
between SQDs by using Ag NPs
Physics process:
ET distance:
Donor/acceptors:
Tool:
Plasmon-enhanced FRET
< 10 nm
SQDs in mononlayer film
large Ag NPs
Physics effect:
Dual-frequency nanoantenna
Dipole and quadrupole SPRs of Ag NPs
receiving
emitting
Size-dependent polarizability of dipole SPRs of Ag NPs:
 ( ) 
3
4RAg
3
2
1  (2 / 5) 2 ( Ag()  SiO2 ) RAg
/ 2
1
 SiO2
 
 3  () 
Ag
SiO2

2
3
2 3/ 2
 4 2
RAg
4

R
4


Ag
SiO2

( Ag() 10 SiO2 ) 2  i
3
 30
3

3


W/O nanoantenna
donor
by single-frequency nanoantenna
acceptor
by dual-frequency nanoantenna
FRET dynamics from donor to acceptor
without Ag NPs
with Ag NPs
FRET efficiency
single
frequency
dual-frequency
antenna
Appl. Phys. Lett. 96, 043106 (2010)
3.2. Plasmon-mediated radiative energy transfer
between semiconductor quantum dots
laser
E
b
PL
Ag NR array
donor
SQDs
acceptor
SQDs
Physics process:
ET distance:
Donor/acceptors:
Tool:
Physics effects:
SPP-mediated radiative ET
~ 500 nm
SQDs / SQDs
Ag NR array
subwavelength imaging
(near-field SPP coupling, resonant transmission, subwavelength focusing)
Half-wave plasmon resonances in Ag NR arrays
Ez - polarized
point source
Ey - polarized
point source
L = mSP/2
m=1
m=2
m=3
50 nm
45 nm
130 nm
220 nm
130 nm
210 nm
3.3. Plasmon amplifications in Ag nanoring
* Tunable PL enhancement (E)
* Plasmon amplifications (T)
Synthesis of singly-twinned Ag nanoring
A
B
C
D
E
Singly
Twinned
Crystal
(19.5)
[110]
[001]t
CdSe SQDs PL enhanced by a Ag nanoring
A
Laser
in
P
L
y
Monolayer
SQDs
x
Single
nanoring
Relative enhancing factor
E
8
7
6
5
4
3
2
1
60
65
70
75
80
O
Incidence angle  in( )
85
a
b

k1

k2
Time-resolved
Photoluminescence
c

k2
2m
Tunable “hot spots”
Photon counts (a.u.)

k1
8000
pure SQDs
7000
6000
SQDs + nanoring
5000
0
2
4
6
Time delay td (ns)
H.M.Gong, et al., Adv.Funct.Mater.19, 298(2009)
8
Plasmon amplification in Ag nanoring
Opt. Express 19, 289 (2010)
Summary
* Ag nanoparticles enhance nonradiative
ET efficiently via dual-frequency antenna
effect
* Ag nanoring has tunable “hot spot” and
could be used in plasmon amplifications
* Multiphoton luminescence from the
hybrid of SQDs and AgNRs are tunable
Acknowledgement




Profs. Q. K. Xue, J. Zi, J. F. Jia
Profs. Z. Y. Zhang, Q. H. Gong
Drs. X. Y. Shan, Q. Zhang
Drs. L. Zhou, H. M. Gong, S. Xiao
X. F. Yu, X. R. Su, Z. K. Zhou
Thank you!