平面问题的直角坐标求解

Download Report

Transcript 平面问题的直角坐标求解

Theory of Elasticity
弹性力学
Chapter 8
Two-Dimensional Solution
平面问题的直角坐标求解
Content(内容)
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Introduction(概述)
Mathematical Preliminaries (数学基础)
Stress and Equilibrium(应力与平衡)
Displacements and Strains (位移与应变)
Material Behavior- Linear Elastic Solids(弹性应力应变关系)
Formulation and Solution Strategies(弹性力学问题求解)
Two-Dimensional Formulation (平面问题基本理论)
Two-Dimensional Solution (平面问题的直角坐标求解)
Two-Dimensional Solution (平面问题的极坐标求解)
Three-Dimensional Problems(三维空间问题)
Bending of Thin Plates (薄板弯曲)
Plastic deformation – Introduction(塑性力学基础)
Introduction to Finite Element Mechod(有限元方法介绍)
Chapter 1
Page
1
Two-Dimensional Solution in
Cartesian Coordinate
• 8.1 Cartesian Coordinate Solutions Using
Polynomials(直角坐标下的多项式解答)
• 8.2 Uniaxial Tension of a Beam(梁的单轴拉
伸问题)
• 8.3 Bending of a Beam by Uniform
Transverse Loading(受均匀横向载荷的梁弯
曲问题)
Chapter
8
Page
2
8.1 Cartesian Coordinate Solutions Using
Polynomials (直角坐标下的多项式解答)
 ui ,  ij ,  ij ;  , , Fi   0
3D
15 unknowns including 3 displacements, 6 strains, and 6 stresses.
 x  xy

 Fx  0  2
2
x
y
( 2  2 )( x   y )  0
x y
 xy  y

 Fy  0
x
y



2 2 2  4 0
4
x
x y
y
4
4
4
1 unknowns
Chapter
8
Page
3
2D
8.1 Cartesian Coordinate Solutions Using
Polynomials (直角坐标下的多项式解答)
General Solution Strategies(求解方法)
1、Direct Method(直接法)
Direct integration of the field equations(直接积分场方程)
 ui ,  ij ,  ij ;  , , Fi   0
Or stress and/or displacement formulations (得到应
力/位移方程.)
Chapter
8
Page
4
8.1 Cartesian Coordinate Solutions Using
Polynomials (直角坐标下的多项式解答)
Example:
Stretching of Prismatic Bar Under Its Own Weight (受自重
的等截面杆)
Fx  Fy  0, Fz    g

 x  yx  zx








x 
y  f xxy 0, yz   zx  0
x
y
z

The
equilibrium
equations
reduce to
 y  yz  xy



 f y  0, 
(平衡方程简化为)
y
z
x

 z  xz  yz

 z


 Fz  0。
  Fz   g

z
x
y

z
Chapter
8
Page
4
8.1 Cartesian Coordinate Solutions Using
Polynomials (直角坐标下的多项式解答)
Example:
 z
  Fz   g
z
boundary condition
σz |z=0=0
 z ( z)   gz
using Hooke’s law
 gz
v  gz
z 
, x   y  
E
E
 xy   xz   yz  0
Chapter
8
Page
5
8.1 Cartesian Coordinate Solutions Using
Polynomials (直角坐标下的多项式解答)
Example:
 gz
v  gz
z 
, x   y  
E
E
 xy   xz   yz  0
integrating the strain-displacement relations:
with boundary conditions of zero displacement
and rotation at point A(积分应变-位移方程,加上A点
位移和转动都为0)
v  gxz
v  gzy
u
,v  
E
E
g 2
 z  v( x 2  y 2 )  l 2 
w
2E
Chapter
8
Page
5
8.1 Cartesian Coordinate Solutions Using
Polynomials (直角坐标下的多项式解答)
2、Inverse Method(逆解法)
particular displacements or stresses are selected that satisfy the
basic field equations. A search is then conducted to identify a
specific problem that would be solved by this solution field.(选择满
足相容方程的应力函数,再根据应力边条和几何边条找出能用所选取的应
力函数解决的问题.)
φ
 2
 x  2  FX x
y
 2
 y  2  FY y
x
 2
 xy  
xy
Chapter
8
 4
 4
 4
2 2 2  4 0
4
x
x y
y
Boundary Conditions
geometry
Page
6
8.1 Cartesian Coordinate Solutions Using
Polynomials (直角坐标下的多项式解答)
3、Semi-Inverse Method(半逆解法)
part of the displacement and/or stress field is specified, and the other
remaining portion is determined by the fundamental field equations
(normally using direct integration) and the boundary conditions.(假定部
分或全部应力分量为某种形式的双调和函数,从而导出应力函数,再考察由这个
应力函数得到的应力分量是否满足全部边界条件)
φ
σ(part)
 2
 x  2  FX x
y

 FY y
2
x
 2
 xy  
xy
y 
Chapter
2
8
σ
 4
 4
 4
2 2 2  4 0
4
x
x y
y
Page
7
B. C.?
8.1 Cartesian Coordinate Solutions Using
Polynomials (直角坐标下的多项式解答)
Inverse Method in terms of Polynomials:(多
项式解法)
1:one-order Polynomials (一次多项式)
 f
2
x 
y 
y
2
 2 f
 FX x
Assume Fx=Fy=0
 x   y   xy  0
 FY y
x
 2 f
 xy  
xy
2
 f  C0  C1x  C2 y
Chapter
One-order Polynomials is fit for zero body force,
zero stress state.(适用于零体力,零面力情况)
8
Page
8
8.1 Cartesian Coordinate Solutions Using
Polynomials (直角坐标下的多项式解答)
2:two-order Polynomials (二次多项式)
 f  C1x2  C2 xy  C3 y2
x 
y 
 2 f
y
2
 2 f
 FX x
 FY y
x
 2 f
 xy  
xy
2
 x  2C3
 y  2C1
Assume Fx=Fy=0
Chapter
 xy  C2
two-order Polynomials is fit for a uniformity
distribution of stress(适用于均匀应力分布)
8
Page
8
8.1 Cartesian Coordinate Solutions Using
Polynomials (直角坐标下的多项式解答)
3:general states(推广到无穷阶)


 f ( x, y )   Amn x y
m
n
y 
m 0 n 0
m + n 1
x=0, y=0,,xy=0
second-order
a constant stress field
third-order
a linear distribution of stress
higher-order
……
Chapter
8
x 
Page
9
 2 f
y 2
 2 f
x 2
 2 f
 xy  
xy
8.1 Cartesian Coordinate Solutions Using
Polynomials (直角坐标下的多项式解答)
 f  A40 x4  A22 x2 y2  A40 y4
满足双调各方程:
 4
 4
 4
2 2 2  4 0
x 4
x y
y
A40 x4  A22 x2 y2  A40 y4  0
8.1
specifies one constant in terms of the other two leaving two constants
to be determined by the boundary conditions.(由上式8.1再加上边界条件
就可求出所有系数)
Chapter
8
Page
9
8.1 Cartesian Coordinate Solutions Using
Polynomials (直角坐标下的多项式解答)


 f ( x, y )   Amn x m y n
m 0 n 0
满足双调各方程:
 4
 4
 4
2 2 2  4 0
x 4
x y
y
( m  2)( m  1)m(m  1) Am 2,n 2  2m(m  1)n( n  1) Amm
( n  2)( n  1)n( n  1) Am2,n  2  0
the general relation that must be satisfied to ensure that
the polynomial grouping is biharmonic(对于任意阶多项式要
满足双调和方程)
Chapter
8
Page
10
8.2 Uniaxial Tension of a Beam
(单轴拉伸梁)
Problem:
plane stress case
Saint Venant approximation to the more general case with
nonuniformly distributed tensile forces at the ends x =±l. (由圣维南
原理可知对于在x =±l处拉力分布不均但静力等效的情况也适用)
Solution( inverse method) (逆解法):
The boundary conditions
(边界条件):
Chapter
8
( y ) y  c  0, ( xy ) y  c  0
( x ) x  l  T , ( xy ) x  l  0
Page
11
8.2 Uniaxial Tension of a Beam
(单轴拉伸梁)
求应力函数Φ
constant stresses on each of the beam’s boundaries:
  A02 y2
 2
 2
 2
 x  2 ,  y  2 , xy  
y
x
xy
polynomial is biharmonic
Boundary condition
 x  2 A02 , y   xy  0
( x ) x  l  T , ( xy ) x  l  0
Therefore, this problem is given by:
A02  T 2
 x  T , y   xy  0
Chapter
8
Page
12
8.2 Uniaxial Tension of a Beam
(单轴拉伸梁)
求u ,ε
u
1
T
  x  ( x  v y ) 
x
E
E
v
1
T
  y  ( y  v x )  v
y
E
E
Integral(积分)
 xy
u v
  2 xy 
 0  f ( y)  g ( x)  0
y x

f  g 0
T
u x
E
T
v   y
E
Chapter
T
u  x  f ( y)
E
T
v  v y  g ( x )
E
g ( x)   f ( y)  cons tan t
f ( y)  o y  uo
g ( x)  o x  vo
x  T / E
 y   T / E
Page
 x  T , y   xy  0
8.2 Uniaxial Tension of a Beam
(单轴拉伸梁)
inverse method(逆解法)
  A02 y
 x  2 A02 , y   xy  0
2
Physical Equations
e
Geometrical
Equations
 4
 4
 4
2 2 2  4 0
4
x
x y
y
Chapter
8
( x ) xl  T , ( xy ) xl  0
Page
14
u
8.3 Bending of a Beam by Uniform Transverse
Loading(受均匀横向载荷的梁弯曲问题)
q
1
ql
ql
h/2
h/2
z
y
x
l
l
y
Airy stress function(艾里应力函数)
stress field(应力场)
Boundary Conditions(边界条件)
compare with elementary strength of materials(和材力结果相比)
Chapter
8
Page
15
8.3 Bending of a Beam by Uniform Transverse
Loading(受均匀横向载荷的梁弯曲问题)
q
1
ql
ql
h/2
h/2
z
x
y
l
y
∵ q =const.
 y  f ( y)
2) Format of Stress function
l
 2
 y  2  f ( y)
x
plane stress conditions
(semi-inverse method 半逆解法)
1, Airy stress function
Integrate above:

 xf ( y )  f1 ( y )
Stress Component
Force
x2
x
M (主要由弯矩引起;)
x


f ( y )  xf1 ( y )  f 2 ( y )
Q (主要由剪力引起;)
 xy
2
f ( y), f1 ( y), f 2 ( y) to be determined
q (由 q 引起)
y
1) Stress components
Chapter
8
Page
16
8.3 Bending of a Beam by Uniform Transverse
Loading(受均匀横向载荷的梁弯曲问题)

 xf ( y )  f1 ( y )
x 2
x
  f ( y)  xf1 ( y)  f 2 ( y)
2
3)satisfy the biharmonic equation
 4  0
 4 
4
4
4






4

2

   x 4
x 2y 2 y 4
 4
0
4
x
Chapter
8
 4 x 2 ( 4)
( 4)
( 4)

f
(
y
)

xf
(
y
)

f
1
2 ( y)
4
y
2
 4
2 2 2  2 f ( 2) ( y)
x y
Page
x 2 ( 4)
f ( y )  xf1( 4) ( y )  f 2( 4) ( y )
2
 2 f ( 2) ( y )  0
17
8.3 Bending of a Beam by Uniform Transverse
Loading(受均匀横向载荷的梁弯曲问题)
x ( 4)
f ( y )  xf1( 4) ( y )  f 2( 4) ( y )  2 f ( 2) ( y )  0h/
h/
2
2
2
q
1
2
y
关于 x 的二次方程,且要求 -l≤ x ≤ l 内方程均成立。
f
( 4)
( y)  0
( 4)
1
f
( y)  0
f ( y)  Ay3  By 2  Cy  D
f1 ( y)  Ey3  Fy 2  Gy
2
此处略去了f1(y)中的常数项
x
  f ( y)  xf1 ( y)  f 2 ( y)
2
Chapter
8
Page
f 2 ( y)  2 f
( 4)
f 2 ( y)  
q
lx
q
zl
l y
( 2)
l
( y)  0
A 5 B 4
y  y  Hy 3  Ky 2
10
6
x2
  ( Ay 3  By 2  Cy  D)  x( Ey 3  Fy 2  Gy)
2
A
B
 ( y 5  y 4  Hy 3  Ky 2 )
10
6
18
8.3 Bending of a Beam by Uniform Transverse
Loading(受均匀横向载荷的梁弯曲问题)
x2

( Ay 3  By 2  Cy  D)  x( Ey 3  Fy 2  Gy)
2
A 5 B 4
 (
y  y  Hy 3  Ky 2 )
10
6
9 unknown
coefficients
2, stress field
 2 x 2
x  2 
(6 Ay  2 B)  x(6 Ey  2 F )  2 Ay 3  2 By 2  6 Hy  2 K
y
2
 2
y  2
x
 Ay3  By 2  Cy  D
 2
 xy  
xy
  x(3 Ay 2  2By  C )  (3Ey 2  2Fy  G)
Chapter
8
Page
19
8.3 Bending of a Beam by Uniform Transverse
Loading(受均匀横向载荷的梁弯曲问题)
3, Boundary Conditions
 2
x  2
y
1) Symmetry Condition
 2
y  2
x
 Ay3  By 2  Cy  D
 2
 xy  
xy
  x(3 Ay 2  2By  C )  (3Ey 2  2Fy  G)
q
q
lx
q
l
 x , y
 xy
x2
(6 Ay  2B)  x(6 Ey  2 F )  2 Ay 3  2 By 2  6 Hy  2 K
2
6 Ey  2 F  0
3Ey 2  2Fy  G  0
l
l y

E  F G 0
—— x 的偶函数
x2
 x  (6 Ay  2 B)  2 Ay 3  2 By 2  6 Hy  2 K
2
—— x 的奇函数
 y  Ay3  By 2  Cy  D
 xy   x(3 Ay 2  2By  C )
Chapter
8
Page
20
8.3 Bending of a Beam by Uniform Transverse
Loading(受均匀横向载荷的梁弯曲问题)
q
2) Boundary Conditions
ql
ql
a) Top and bottom(上下面,主要)
h
y   ,  y  q;
2
h
y  ,  y  0;
2h
y   , xy  0;
2
x
h2
3A
 Bh  C  0
42
h
3A
 Bh  C  0
4
h3
h2
h
 A  B  C  D  q
8
4
2
h3
h2
h
A B  C  D  0
8
4
2
x2
 x  (6 Ay  2 B)  2 Ay 3  2 By 2  6 Hy  2 K
2
 y  Ay3  By 2  Cy  D
8
l
2q
A 3 ,
h
B  0,
3q
C
2h
q
D
2
 xy   x(3 Ay 2  2By  C )
Chapter
l y
Page
21
8.3 Bending of a Beam by Uniform Transverse
Loading(受均匀横向载荷的梁弯曲问题)
6q 2
4q 3
 x   3 x y  3 y  6 Hy  2 K
h
h
2q 3 3q
q
ql
y  3 y 
y
h
2h
2
 xy
6q 2 3q
 3 xy 
x
h
2h
q
ql
x
l y
b) End conditions(左右边界,次要)
x  l,
x
x l
h
h
  y
2
2
0
 xy
x l
h
h
  y
2
2
 未知
Using Saint-Venant’s Principle
轴力 N = 0;
statically equivalent force
弯矩 M = 0;
剪力 Q = -ql;
Chapter
8
Page
22
l
8.3 Bending of a Beam by Uniform Transverse
Loading(受均匀横向载荷的梁弯曲问题)
轴力 N = 0;
弯矩 M = 0;
剪力 Q = -ql;
h
2
h

2
h
2
h

2
h
2
h
2
N    x  x l dy  0
M    x  x l ydy  0
Q    xy  dy  ql
6q
4q
 x   3 x 2 y  3 y 3  6 Hy  2 K
h
h
y 
2q 3 3q
q
y

y

h3
2h
2
6q 2 3q
 xy  3 xy  x
h
2h
Chapter
8
Page
x l
K 0
ql 2
q
H 3 
h
10h
自动满足
2
6q 2
y
y
3
2
 x  3 (l  x ) y  q (4 2  )
h
h h 5
2
q  y  2 y 
 y   1  1  
2  h 
h 
6q  h 2
2
 xy   3 x  y 
h  4

23
8.3 Bending of a Beam by Uniform Transverse
Loading(受均匀横向载荷的梁弯曲问题)
4, compare with elementary strength of materials
2
6q 2
y
y
3
 x  3 (l  x 2 ) y  q (4 2  )
h
h 5
2h
M
y  y2 3 
x 
y  q  4 2  
I
h  h 5
2
q  y  2 y 
 y   1  1  
2  h 
h 
q  y  2 y 
 y   1  1  
2  h 
h 
6q  h 2
2
 xy   3 x  y  Q  qx
h  4
2

q
ql
ql
x
l y
Chapter
l
8
h
y2
S 
8
2
1 3
I h
12
 xy
q 2
M  (l  x 2 )
2
Page
24
QS

bI
8.3 Bending of a Beam by Uniform Transverse
Loading(受均匀横向载荷的梁弯曲问题)
4, compare with elementary strength of materials
M
y  y 3
x 
y  q  4 2  
I
h  h 5
2
q  y  2 y 
 y   1  1  
2  h 
h 
2
 xy
QS

bI
Chapter
8
第一项与材力结果相同,为主要项。
第二项为修正项。当 h / l<<1,该项误差
很小,可略;当 h / l较大时,须修正。
为梁各层纤维间的挤压应力,材力中不
考虑。
与材力中相同。
Page
25
8.3 Bending of a Beam by Uniform Transverse
Loading(受均匀横向载荷的梁弯曲问题)
M
y  y2 3 
x 
y  q  4 2  
I
h  h 5
2
q  y  2 y 
 y   1  1  
2  h 
h 
q
ql
ql
x
l y
l
 y τ xy
 x ()
 xy
( )
Chapter
8
Page
26
QS

bI
Vocabulary(词汇)
多项式
单轴的
梁
均匀的
逆解法
半逆解法
双调和的
艾里应力函数
Polynomials
Uniaxial
Beam
Uniform
Inverse Method
Semi-Inverse Method
Biharmonic
Airy stress function
Chapter
8
Page
27
Homework
o
x
b
1:设有矩形截面的长竖柱,密度为ρ,在一边侧面上受
均布剪力q,如图1,试求应力分量.
q
提示:可假设σx=0,或假设τxy=f(x),或假设σy如材料力
学中偏心受压公式所示.上端边界条件如不能精确满
足,可应用圣维南原理.
ρg
y
图1
o
x
α
ρg
2:设图2中的三角形悬臂梁只
受重力作用,而梁的密度为ρ,
试用纯三次式的应力函数求
解.
y
图2
Chapter
8
Page
27
Homework
y
o
3:挡水墙的密度为ρ1,厚度为b,图3,水的密
度为ρ2,试求应力分量.
b/2 b/2
ρ2 g
ρ1g
(提示:可假设σy=xf(y)上端的边界条件如不
能精确满足,可应用圣维南原理,求出近似的
解答)
x
图3
Chapter
8
Page
27