Non-covalent modification of luminescent Tb-TCAS

Download Report

Transcript Non-covalent modification of luminescent Tb-TCAS

Non-covalent modification of
luminescent Tb-TCAS-doped
silica nanoparticles surface by
surfactants.
Bochkova O.D., Fedorenko S.V. Elistratova
Yu.G., Mustafina A.R., Antipin I.S.,
Solovieva S.E., Konovalov A.I.
A.E. Arbuzov Institute of Organic and
Physical Chemistry, Kazan Scientific Center
of RAS.
Properties of Tb-TCAS complexes.
+
Tb-TCAS
-
Na O3S
+ Na O3S
SO3 Na+
+
SO3 Na
2
Emission spectrum of Tb-TCAS complex.
φ = 0.141
S
S
HO
O
S O
O
S
Tb3+
Antennae effect
+
1. Intensive and narrow emissive bands
2. Long life-time of excited state
1. Toxicity
2. Easy degradation
The common goal of the investigation:
preparing of luminescent silica nanoparticles,
their characterization,
studying of properties
and using.
Na+
OH
O
Si
O Si
Na+
O
Si
Na+
OH
O
Si
O
O
O
Si
SO3
-
O
O3S-O S
3
-
SO3
-
O
Si OH
HO Si
S S
S
O
OH
O
O Si
O
Si
3+
Tb 3+
Tb
O
Na+
O
S
O
O
Si
Si
HO
O
S
O
O
Si
O
OH
Na+
=Tb(III)-TCAS
OH
Na+
O
(SiO2)n =
Si O Si
O
O
Si O Si
3
4
Preparation of Tb-TCAS-doped silica nanoparticles.
n Si(OC2H5)4
+H2O
NH4OH
n Si(OH)4
(SiO2)n
-H2O
Si(OC2H5)4
Na+
oil
OH
O
Si
-
H2O
O3S
-O S
SO3
SO3
3
H2O
O Si
Na
+
HO
O
S O
O
Tb3+
Si
O
Si
O
O
O
Si
SO3
-
O
O3S-O S
3
-
SO3
-
O
Si OH
HO Si
S
S
O
Na+
OH
S
O
S S
S
O
OH
O
O
Si
Si
3+
Tb 3+
Tb
O
Na+
O
S
O
O
Si
Si
HO
O
S
O
O
Si
O
OH
Na
+
=Tb(III)-TCAS
OH
Na+
O
5
Advantages of Tb-TCAS-doped silica nanoparticles.
SO3
O3S
-O S
S
O
S O
O
HO
O
S
0,8
I, a.u.
S
OH
-
SO3
3
Na+
1,0
Si
O Si
0,6
Na+
O
Si
Na+
OH
O
Si
O
O
O
Si
SO3
-
O
O3S-O S
3
-
SO3
O
-
Si OH
HO Si
0,4
S S
S
O
OH
O
O Si
0,2
Na+
0,0
450
500
550
, nm
600
650
O
S
O
O
Si
3+
Tb3+
O
Tb3+
O
Si
Si
HO
O
S
O
O
Si
O
OH
OH
Na+
=Tb(III)-TCAS
1. Toxicity
1. Low toxicity
1,0
2. Less intensive
luminescence
3. Low stability
2. More intensive
luminescence
0,8
I, a.u.
-
3 days
0,6
0,4
3. High stability
4. Simple synthetic
procedure
3 hours
0,2
0,0
450
500
550
, nm
600
650
5. Easy surface
modification
Na+
O
6
The covalent modification of silica nanoparticles surface.
HO-Si
Si-OH
HO-Si
Si-OH
HO-Si
Si-OH
APS
(3-aminopropyl)triethoxysilane
APS
H2 N
NH2
COOH
NH2
NH2
H2 N
NH2
H2 N
NH2
C2H5O
OC2H5
C2H5O
Si
CH2CH2CH2NH2
Succinic
HOOC
COOH
HOOC
COOH
anhydride
COOH
H2C CH2
Succinic
OC
CO
anhydride
O
SiO2 Tb-TCAS as biomarker for the Black Death antigens.
HOOC
HOOC
HOOC
HOOC
HOOC
COOH
COOH
COOH
COOH
COOH
HOOC
HOOC
H3C
H3C
COOH
COOH
HOOC COOH
HOOC
HN
C
3
H3C
HC
N3
H3C
N
N
N
N(CH
CH2OH)
N(CH
OH)33
2 2CH
2
COOH
SiO2 -COOH
SiO2 -COOH
nanoparticles,
nanoparticles,
SiO
-COOH via
containing2 Tb-TCAS
containing Tb-TCAS
via
luminophores
N
N
O
O
NH+
O
CH H3C
NH+
O
CH3 3H3C
H
C
CH3 NH
N
N
3
NH
R
pH=8.2
pH=8.2
N(CH2CH2OH)3
pH=8.2
N N
H3C
H3C
CH3
NH+
R
RO
R
O
R
NH R
R
R
R
R
R
CH3
R
R
N
H3C
nanoparticles,
containing Tb-TCAS via
luminophores
R
7
R
CH3
H2N
H2N
antibody
of
black death
antibody ofH N
2
luminophores
black death
modified
of
antigens antigen
of
black
blackdeath
death
modified antigen of
black death
modified antigen of
black death
Images of the recognition
of black death antigens.
antibody of
black death
8
The next step of our work is the investigation of TbTCAS-doped silica nanoparticles behavior in different
media.
Methods of investigation:
1. Luminescent spectroscopy
2. UV-Vis spectroscopy
3. Dynamic light scattering (DLS)
4. Electrophoresis
5. Transmission electron microscopy (TEM)
6. Atomic force microscopy (AFM)
Size of Tb-TCAS-doped silica nanoparticles
In an aqueous solution
In a solid state
d = 40±5 nm
d = 180±5 nm
TEM image of Tb-TCAS
doped silica nanoparticles
рН = 6-7
DLS image of Tb-TCAS doped silica nanoparticles
Na+
OH
OH
O
Si
Si
O+
Na
O
O Si
O
Si
OH
Si
O
Si
O
O
Si
-
SO3
-
O
Na+
OH
O
O3S-O S
3 O
SO3
-
OO
Si OH
HO Si
Si
- Si
O
O
OH
S S
S
O
OH
O
- Si
O
Si
HO
O
S
O
O
O
Si
Si
O
OH
Na+
Na+
SiSi O
OH
O
Si
Na+
O
Tb3+
O
O
O
S
O
OH
aggregation
ζ = -30 mV
9
Interaction of Tb-TCAS-doped silica nanoparticles with cationic 10
surfactant cetyltrimethylammonium bromide (CTAB)
CCTAB, M
а) С CTAB = 5·10-5 mol/l
0,0000
400
+
(CMC = 8,5·10-3 mol/l)
OO
++
Na
Na
Tb-TCAS
Tb-TCAS Si
Si OH
OH
Si
Si OO
++ ЦТАБ
CTAB
ЦТАБ
Si
Si
Si
Tb-TCAS
O
Si
+
+
OH
Si O
20
zero zeta-potential
250
0
200
150
0,0000
O
-20
+
aggregation
0,0005
0,004
CCTAB, M
0,006
-40
0,010
0,008
Si
Nanoparticles average size and
zeta-potential dependence on
CTAB concentration
HO Si Tb-TCAS
+
40
CMC = 8,5*10 mol/l
300
++
Si
Si O
O
Na
Na
0,010
80
-3
Tb-TCAS
Tb-TCAS Si
Si OH
OH
++
0,008
60
Br
++
O
O
0,006
-potential, mV
Si
Si
0,004
350
d, nm
N
0,0005
Si
O
ζ = +74,4 mV
b) С CTAB = 5·10-4 - 1·10-2 mol/l
Si
Tb-TCAS
O
Si
Si O
Na
OH
Na
-
+
+
+ CTAB
Si
Tb-TCAS
O
Si
Si O
+
+
Tb-TCAS
OH
+
+
-
+
+
+
repulsion
+
-
+
Tb-TCAS
-
+
-
Interaction of Tb-TCAS-doped silica nanoparticles with dicationic
11
surfactant cetyltrimethylammonium bromide (CTAB)
+
+
(CH3)2 N (CH2)6 N (CH3)2
C16H33
C16H33
Gemini 16-6-16
(CMC = 2·10-5 mol/l)
Average diameter (d), polydispercity indexe
(PDI) and zeta-potential values (ζ) of SiO2
Tb-TCAS at various concentrations of
Gemini.
СGemini, M
d, nm
PDI
ζ±10%, mV
1·10-5
237 ± 2
0.197
+36
5·10-5
228 ± 4
0.182
+41
1·10-4
238 ± 14 0.280
+38
1·10-3
224 ± 2
0.159
+43
1·10-2
237 ± 6
0.224
+53
Interaction of Tb-TCAS-doped silica nanoparticles with acid-base
12
indicator Phenol Red.
HO
O
O
O
+
-
SO3 Na
-H
+
- +
SO3 Na
pKа = 8.0
Molecular form
0,4
Anionic form
SiO2 Tb-TCAS + Gemini + PhR
pH = 8.2
Gemini + PhR
SiO2 Tb-TCAS + PhR
0,2
А
PhR
0,0
200
300
400
, nm
500
600
700
UV-Vis spectra of Phenol Red (PhR aqueous solution) in presence of SiO2 Tb-TCAS;
Gemini and SiO2 Tb-TCAS covered by Gemini.
13
Possible locations of Phenol Red
Stern layer
-
-
H2O
160000
140000
SiO2 Tb-TCAS covered by Gemini in presence of Phenol Red
Emission spectra
Stern-Folmer dependence
-6
2 10 mol/l
120000
I0/I = 1 + kqCPhR
Phenol
Red
100000
80000
kq ~ r-6
60000
-5
8 10 mol/l
40000
20000
0
450
2,2
2,0
500
550
600
, nm
650
UV-Vis spectra
1,8
1,6
-
1,4
+
1,2
+
- (SiO )
2 n
А
I, a.u.
14
1,0
0,8
-5
8 10 PhR
0,6
-5
6 10 PhR
0,4
-5
4 10 PhR 1 10-5 PhR
0,2
0,0
200
300
400
, nm
500
+
+
600
700
+
+
15
-
+
=
-
?
-
-
=
HPO42-
-
+
C9H19 O SO3 Na
- DS-
Interaction of HPO42- with SiO2 Tb-TCAS covered by micellar layer containing 16
Phenol Red
+
+
+ + (SiO2)n+ +
+
+
140000
I, a.u.
120000
+
+
+ + (SiO2)n+ - +
+
+
2= HPO4
+ -
SiO2 Tb-TCAS
5·10-5
100000
СGemini,
M
80000
CHPhR,
M
5·10Tb-TCAS + PhR + Na HPO
SiO
2
2
4
CNa2HPO4,
60000
M
40000
20000
0
450
-6
1·10-4
1·10-3
SiO2 Tb-TCAS-2+ PhR
1·10
d, nm
278 ± 2
PDI
0.311
0.249
0.878
ζ±10%,
mV
27
16
19
500
314 ± 4 aggregation
550
, nm
600
650
Interaction of DS- with SiO2 Tb-TCAS covered by micellar layer containing
Phenol Red
+
+
+
+
+
SiO2
+
+
+
+
-
-
+ +
=
+
+
SiO2
+
+
+
+
-
+
200000
SiO2 Tb-TCAS + Gemini
40
-4
20
SiO2 Tb-TCAS + Gemini
+ PhR + SDS 1 10
-4
SiO2 Tb-TCAS + Gemini + PhR
150000
DS-
-
60
SiO2 Tb-TCAS + Gemini
+ PhR + SDS 5 10
+
+
-
0
-20
SiO2 Tb-TCAS + Gemini
+ PhR + SDS 1 10
100000
-6
-40
0,0000
50000
0
450
0,0002
0,0004
0,0006
0,0008
0,0010
CSDS, mol/l
500
550
, nm
600
650
+
C9H19 O SO3 Na
-
+
Emission spectra
250000
I, a.u.
+
+
300000
-
+
, mV
+
-
17
Zeta-potential (ζ) dependence on SDS
concentration.
Interaction of DS- with SiO2 Tb-TCAS covered by micellar layer containing
Phenol Red
-
(SiO2)n
-
300000
on
on
250000
I, a.u.
200000
150000
100000
off
50000
0
450
500
550
, nm
600
650
-
18
19
Conclusion.
Na+
OH
+
Na
+
-
Na
-
SO3
O3S
-O S
SO3
3
S
S
Na
S O
O
HO
O
S
O
+
Si
O Si
Na +
Na+
+ TEOS
O
Na+
OH
O
Si
Si
O
O
O
Si
SO3
-
O
O3S-O S
3
-
SO3
-
+
O
Si OH
+ Gemini
HO Si
O
O
S S
S
OH
O
Na+
O
O
Si
Si
3+
Tb 3+
Tb
O
Tb3+
O
S
+
O
SiO2
+
+
+ Gemini
+
O
Si
Si
O
HO
Na+
+
S
O
O
Si
O
OH
OH
Na+
=Tb(III)-TCAS
+
+
+
+
+
+
+
SiO2
+
+
+
+
+
on
+
+
+ PhR
+
+
SiO2
+
+
+
+
+
+
+
-
+
+
+ SDS
+
+
+
-
+
off
-
+
SiO2
+
+
on
+
+
-
+
+
20
Acknowledgements.
IOPC named after A.E. Arbuzov
Mustafina A.R.
Fedorenko S.V.
Elistratova Yu.G.
Konovalov A.I.
Initial substances
Antipin I.S.
Solovieva S.E.
AFM method
Kahirov R.K
Kazan Federal University
Method of
Mostovaya O.A.
luminescence spectroscopy
Stoikov I.I.
Institute of Macromolecular Compounds,
St. Petersburg
TEM method
Menshikova A.Yu
M.M. Shemyakin and Yu.A. Ovchinnikov
Institute of Bioorganic Chemistry, Moscow
Bioorganic investigations
Zubov V.P.
RFBR project N 09-03-12260 Ofi_M for financial supporting
35
30
, S/cm
25
SiO2 Tb(III)-TCAS
20
15
10
Na+
5
OH
O
Si
O Si
Na
+
O
Si
Na+
OH
O
0
0,0
Si
O
O
O
Si
SO3
-
O
O3S-O S
3
-
SO3
-
O
Si OH
HO Si
S S
S
O
OH
O
O Si
O
S
O
O
Si
3+
Tb 3+
Tb
O
Na+
O
Si
Si
HO
SiO2
O
S
O
O
Si
O
OH
Na+
=Tb(III)-TCAS
OH
Na+
O
0,1
0,2
C, г/л
0,3
0,4
0,5
O
Tb-TCAS
O
Si CH2CH2CH2NH2
Tb-TCAS
O
Si
OH
Si CH2CH2CH2NHC(O)CH2CH2COOH
O
Si
OH
2,2
-5
8 10 mol/l
2,0
565 nm
1,8
567 nm
1,6
PhR
1,4
570 nm
А
1,2
1,0
-5
1 10 mol/l
0,8
0,6
0,4
573 nm
0,2
0,0
200
558 nm
300
400
, nm
500
600
700
Nonionic surfactant Triton X-100
CH3
CH3
H2C
H3C
CH3
(OCH2CH2)xOH
CH3
x=10
СGemini, M
5·10-5
ζ±10%, mV
CHPhR, M
d, nm
PDI
0
228 ± 4
0.182 41
2·10-5
226 ± 4
0.150 42
4·10-5
223 ± 4
0.208 36
6·10-5
238 ± 13 0.067 29
8·10-5
250 ± 50 0.242 29
СGemini, M
5·10-5
CHPhR, M
CSDS, M
d, nm
PDI
ζ±10%, mV
5·10-6
1·10-6
5·10-6
1·10-5
2·10-5
3·10-5
4·10-5
5·10-5
6·10-5
7·10-5
8·10-5
9·10-5
1·10-4
5·10-4
1·10-3
246 ± 4
236 ± 3
216 ± 3
216 ± 2
227 ± 4
271 ± 4
325 ± 4
369 ± 5
420 ± 4
494 ± 6
aggregation
aggregation
-
0.183
0.179
0.166
0.151
0.175
0.237
0.225
0.251
0.243
0.287
1.000
1.000
0.462
0.429
35
42
35
43
46
46
47
47
46
43
18
0
-33
-34
Peak
nm
means,
296 ± 30; 47 ± 4
256 ± 17; 45 ± 5
12
capillary
hν
luminescence
hν
No
luminescence
400000
SiO2 Tb-TCAS
SiO2 Tb-TCAS + TEAB
SiO2 Tb-TCAS + TBAB
SiO2 Tb-TCAS + CTAB
200000
100000
0
450
500
550
600
, nm
650
2000
1,0
1800
3-
1600
[Co(CN)6]
0,8
Co(dipy)3
1400
3+
[Co(NH3)6]
3+
1200
dср, нм
0,6
I, a.u
I, a.u
300000
+
[Co(en)2C2O4]
0,4
1000
800
600
0,2
400
3+
[Co(dipy)3]
200
0,0
0,0
-4
-3
-3
-3
-3
-3
5,0x10 1,0x10 1,5x10 2,0x10 2,5x10 3,0x10 3,5x10
CCo(III), mM
3+
Co(NH3)6
-3
0
0,000000
0,000001
0,000002
0,000003
ССо(III), моль/л
0,000004
0,000005
H2O
SiO2
40±5 nm
SiO2
60-80 nm