Nowe zaprojektowane sole jako elektrolity do baterii litowych

Download Report

Transcript Nowe zaprojektowane sole jako elektrolity do baterii litowych

Development of Novel
Lithium Salts for
Battery Applications
Outline of the presentation
1.
2.
3.
Introduction – searching for new salts for lithium
batteries
Synthesis and characterization of novel family of
organic covalent lithium salts
Properties of polymer and liquid electrolytes
containing newly developed salts:
•
•
•
•
•
4.
conductivity
lithium transference number
formation of ionic aggregates
electrochemical stability
performance in lithium batteries
Conclusions
Anions:
•
Control dissociation and conductivity
•
Control transport numbers t+ /t-
•
•
are an important part of SEI build-up
at +/- electrodes
Control aluminium corrosion
Classics…
BF4-
ClO4-
Explosive !
Toxic !
PF6-
AsF6-
SbF6-
Tendency to décompose according to equilibrium:
LiBF4  BF3 + <LiF>
LiPF6   PF5 + <LiF>
Fast reaction above 80°C
 Destruction of electrolyte and interfaces
Conceptual approach to anion design

“O” is not a favorable building block:
Strong Li—O interactions  ion pairing, ≠ ClO4-, BOBIf O present, F or CnF2n+1 is required

“N, C” are favorable:
Weak interactions Li—N but easy oxidation
Stability Domains
Fluorinated anions
LiCoPO4
LiMO2
mixed
oxides
LiMnPO4
Non fluorinated anions
LiFePO4
LiV3O8
Li4Ti5PO12
Graphite
Li metal
Hückel anions…
Aromaticity 4n + 2 «  » electrons
X = N, C-CN, CRF, S(O)RF
pKA = 10-60
pKA = 10-20
Gain of > 1 eV by resonance
See P. Johansson et al
Physical Chemistry Chemical Physics, volume 6, issue 5, (2004).
LiDCTA
NC
CN
NC
H2N
NH2
-2H2O
-
O
O
N-
N
N
N
NC
CN
CN
DCTA
N
-
Stable to 3.8 V (La Sapienza, KZ)
inexpensive
N
N
NC
CN
Gives quite fluid ILs
N
N
N
N
-
Most Stable Lithium Imidazole Configurations
1.93 Å
1.88 Å
1.87 Å
1.92 Å
LiTDI
LiPDI
B3LYP/6-311+G(d)
Scheers et al. 2009
Gas Phase Ion Pair Dissociation Energies
Li+ (g) + Anion- (g)
Ion pair (g)
LiTDI
<
LiPDI
<
LiDCTA
<
LiTFSI
<
LiPF6
MP2/6-31G(d)
LiTDI
LiPDI
LiDCTA
LiTFSI
LiPF6
Scheers et al. 2009
LiTDI (2-trifluoromethyl-4,5dicyanoimidazole lithium salt)
O
N
C
NH2
+
C
N
N
C
CF 3
O
C
NH2
O
C
dioxane / T
C
+ Li2CO3 / water
C
N
C
CF 3
C
N
-
N+
Li
- Easy, low-demanding, inexpensive, one-step, high yield
syntheses;
- Salts are pure, stable in air atmosphere, non-hygroscopic,
stable up to 250°C, easy to handle;
CF 3
New salts
N
NN
N
-
N
CF3
NN
N
Li
-
N
+
C 2 F5
LiTDI
N
Li
+
N
LiTPI
N
n-C3F7
LiHDI
N Li
CF3
N
-
+
LiPDI
N
N
Li
+
Conductivity in PEO
SS / PEO20LiX / SS
0.01
1E-3
1E-4
-1
conductivity /  cm
-1
cooling scan
1E-5
1E-6
DCTA
LiDCTA
PDI
LiPDI
LiTDI
TDI
1E-7
1E-8
2.5
2.6
2.7
2.8
2.9
3.0
3.1
1000/T / K
-1
3.2
3.3
3.4
3.5
LiHDI-PEO Conductivity
-3
1:25 Li/O
1:50 Li/O
-1
log(σ / S·cm )
-4
-5
-6
-7
-8
2,9
3
3,1
3,2
3,3
3,4
3,5
1000·T-1 / K-1
1:25 Ea=76.4 kJ∙mol-1
1:50 Ea=121.8 kJ∙mol-1
T (°C)
127 111
0.01
10
-2
10
-3
10
-4
10
-5
10
-6
10
-7
97
84
72
60
49
39
30
21
13
P(EO)20LiCF3SO3
(Scm )
1E-4
1E-5
PEO
A
PEO2020LiTDI
PEO
LiPDI
PEO 20 B
20
1E-6
2.6
2.8
3.0
1000 / T
N
0.01
2,5
2,6
2,8
2,9
3,0
3,1
3,2
3,3
3,4
3,5
-1
1000/T (K )
PEO20LiBOB/ LiBF4
Hot-Pressing
T / °C
111,5 84 60,1 39,4 21
2,7
0.01
PEO20LiCF3SO3+ ZrO2SA
Casting
T / °C
111,5 84 60,1 39,4 21
T/°C
111,5 84 60,1 39,4 21
0.01
-1
N
+
Li
3.2
-1
PEO20LiDCTA
Hot-Pressing
CN
Conducibilità / Scm
1E-4
1E-5
1E-4
PEO20 LiDCTA
1E-5
PEO20 LiBF4
1E-8
2.4 2.6 2.8 3.0 3.2 3.4 3.6
-1
-1
1000T / K
1E-7
1E-3
1E-4
1E-5
1E-6
1E-6
1E-7
1E-3
-1
-1
1E-3
Conducibilità / Scm
N
K
Conducibilità / Scm
NC
P(EO)20LiDCTA
-1
Conductivity
PEO20LiTDI
PEO20LiPDI
Hot-Pressing
S / cm
1E-3
1E-6
PEO20 LiBOB
PEO20 LiBF4
1E-8
2.4 2.6 2.8 3.0 3.2 3.4 3.6
-1
-1
1000T / K
1E-7
x: 0%
x: 10%
1E-8
2.4 2.6 2.8 3.0 3.2 3.4 3.6
-1
-1
1000T / K
Anodic
stability
Li / PEO LiX / Super P
20
current / mA/cm
2
0.20
DCTA
LiDCTA
PDI
LiPDI
TDI
LiTDI
Anodic breakdown
voltage vs. Li
0.15
0.10
0.05
0.00
3.0
3.5
4.0
4.5
5.0
Potential / V
5.5
6.0
6.5
P(EO)20LiDCTA
3.6V
P(EO)20LiPDI
4.0V
P(EO)20LiTDI
4.0V
Interphase resistance - PEO
Li / PEO20LiX / Li
-60
2h
7h
2d
7d
-100
-40
-20
-80
4.5h
1d
5d
12d
-60
-40
-20
0
0
0
40
80
120
160
200
0
40
80
Zreal / Ohm
2h
7h
2d
7d
-80
-60
LiPDI
4.5h
1d
5d
12d
-40
-20
0
0
120
Zreal / Ohm
-100
Zimm / Ohm
Zimm / Ohm
-80
4.5h
1d
5d
12d
Zimm / Ohm
2h
7h
2d
7d
LiTDI
LiDCTA
-100
40
80
120
Zreal / Ohm
160
200
160
200
Interphase resistance - PEO
Li / PEO20LiX / Li
PDIa
LiPDIa
PDIb
LiPDIb
LiTDIa
TDIa
LiTDIb
TDIb
LiDCTAa
DCTAa
LiDCTAb
DCTAb
240
resistance / Ohm
200
160
120
80
40
0
0
3
6
time / d
9
12
15
Cycling behaviour
% of capacity at C/20
Rate capability (PEO)
% of capacity at C/20
Rate capability (PEO)
LiTDI-PEGDME500 Conductivity
-2,5
2M
1M
0.33M
0.1M
0.033M
0.01M
-3
-1
log(σ / S·cm )
-3,5
-4
-4,5
-5
-5,5
-6
2,9
3
3,1
3,2
3,3
1000·T-1 / K-1
3,4
3,5
3,6
Transference numbers in
PEGDME 500
0.7
LiTDI
LiPDI
0.6
LiHDI
0.5
t+
0.4
0.3
0.2
0.1
0.0
-1
0
1
2
-3
-log(c / mol·dm )
3
4
5
Cation transference number vs.
Ionic conductivity (PEGDME 500)
Salt
Ionic Conductivity
at 1 mol·dm-3 / mS·cm-1
Transference
Number at
1 mol·dm-3
LiTPI
0.05
0.61
LiHDI
0.20
0.21
LiPDI
0.26
0.21
LiTDI
0.28
0.17
LiTDI-PEGDME500
Stability vs. Lithium against time
800
1. sample
2. sample
3. sample
R / Ω·cm
-1
600
400
200
0
0
200
400
t/h
600
800
LiTDI-PC Conductivity
-2,5
1M
0.25M
0.1M
0.033M
0.01M
0.0033M
0.001M
-1
log(σ / S·cm )
-3
-3,5
-4
-4,5
-5
2,9
3
3,1
3,2
3,3
1000·T-1 / K-1
3,4
3,5
3,6
LiHDI-PC Conductivity
-2,5
1M
0.33M
0.1M
0.033M
0.01M
0.0033M
0.001M
0.00033M
-1
log(σ / S·cm )
-3
-3,5
-4
-4,5
-5
-5,5
2,9
3
3,1
3,2
3,3
1000·T-1 / K-1
3,4
3,5
3,6
LiTDI-PC Molar Conductivity
50
20°C
40°C
60°C
30
2
Λ / S·cm ·mol
-1
40
20
10
0
0
0,2
0,4
0,6
c0.5 / mol0.5·dm-1.5
0,8
1
LiHDI-PC Molar Conductivity
12
20°C
40°C
60°C
8
2
Λ / S·cm ·mol
-1
10
6
4
2
0
0
0,2
0,4
0,6
c0.5 / mol0.5·dm-1.5
0,8
1
LiTDI-PC Fuoss-Kraus formalism
association estimation
% of ions / ion pairs / triplets.
100
80
60
ion pairs
triplets
"free" ions
40
20
0
0
1
2
3
-log(c) / mol·dm-3
4
5
LiHDI-PC Fuoss-Kraus formalism
association estimation
% of ions / ion pairs / triplets.
100
80
60
"free" ions
ion pairs
triplets
40
20
0
0
1
2
3
-log(c) / mol·dm-3
4
5
Transference Numbers in PC
0,5
LiTDI
LiPDI
LiHDI
0,4
t+
0,3
0,2
0,1
0,0
0
1
2
3
-3
-log(c / mol·dm )
4
5
Salts-PC Stability vs. Lithium
0,1
LiTDI
LiPDI
LiHDI
0,08
0,06
j / mA·cm
-2
0,04
0,02
0
-0,02
-0,04
-0,06
-0,08
-0,1
0
1
2
3
E / V vs. Li
4
5
LiTDI Conductivity in EC:DMC
-1,5
1M
0.33M
0.1M
0.033M
0.01M
-1
log(σ / S·cm )
-2
-2,5
-3
-3,5
-4
2,9
3
3,1
3,2
3,3
1000·T-1 / K-1
3,4
3,5
3,6
Conductivities (20°C)
Ragone Signature
Anodic limit (Pt, EC-DMC)
Anodic limit (Al, EC-DMC)
Charge profile 4.3 V cut-off, Al collector
Cycling LiMn2O4 4.3 V (EC-DMC)
Swagelok cell , Al plunger
New imidazole-derived salts
• Easy, low-demanding, inexpensive, one-step, high yield syntheses;
• Salts are pure, stable in air atmosphere, non-hygroscopic, stable
up to 250°C, easy to handle;
• 20°C ionic conductivity exceeds:
10-3 S∙cm-1 in PC, 10-4 S∙cm-1 in PEGDME500
10-6 S∙cm-1 in PEO (10-4 S∙cm-1 at 40°C)
6 mS∙cm-1 in EC:DMC
• T+ at ionic conductivity maximum reaches:
0.45 in PC, 0.40 in EC-DMC, 0.25 in PEGDME500 (but overall max
0.62);
• Stable over time against Li;
• Stable up to 4.4 V vs. Li against metallic lithium anode;
• Stable up to 5.0 V vs. Li against aluminum;
• Much smaller association rate than commercially available salts;
Research team working on new salts
Presentation of research team
working on new lithium salts:
Warsaw University of Technology:
- L. Niedzicki and W. Wieczorek – characterization of salts and low molecular weight
polyether electrolytes
- J. Prejzner, P. Szczeciński, M. Bukowska - synthesis of new salts
- Z. Żukowska – spectroscopic studies
Universite de Picardie Jules Verne, Laboratoire de Reactivite et de Chimie des Solides
- S. Grugeon, S. Laruelle - characterization of solid polymeric electrolytes, studies of
electrochemical stability and battery performance
- and M. Armand – development of new salt systems
Faculty of Chemistry, University of Rome, “ La Sapienza
- S. Panero, P. Reale and B. Scrosati, - characterization of solid polymeric electrolytes;
conductivity, transference numbers and electrochemical stability
Department of Applied Physics, Chalmers University of Technology,
- J. Scheers, P. Johansson, P. Jacobsson – modeling and spectroscopic studies
For inquiries about
buying LiTDI
N
(lithium 4,5-dicyano-2(trifluoromethyl)imidazolate)
N
N
please contact:
Leszek Niedzicki
[email protected]
-
N
CF3
LiTDI
Li
+