8.2 Integration by Parts

Download Report

Transcript 8.2 Integration by Parts

8.2 Integration By Parts
Badlands, South Dakota
Photo by Vickie Kelly, 1993
Greg Kelly, Hanford High School, Richland, Washington
Integrate the following:
 x  cos x
dx
8.2 Integration By Parts
Start with the product rule:
d
dx
 uv   v
du
dx
u
dv
dx
d uv   v du  u dv
d uv   v du  u dv
u dv  d uv   v du
u
dv 
  d  uv   v du 
u
dv 
  d  uv     v du
u
dv  uv   v du
This is the Integration by Parts
formula.

u
dv  uv   v du
u differentiates to
dv is easy to
integrate.
zero (usually).
The Integration by Parts formula is a “product rule” for
integration.
Choose u in this order:
LIPET
Or
LIPTE
Logs, Inverse trig, Polynomial, Exponential, Trig

Integration by Parts
!
Example 1:
 x  cos x
u
dx
polynomial factor
u v   v du
dv  uv   v du
LIPET
ux
d v  co s x d x
du  dx
v  sin x
x  sin x   sin x dx
 x  cos x
dx  x  sin x  co s x  C

Example 2:
u
 ln x dx
dv  uv   v du
LIPET
logarithmic factor
u v   v du
u  ln x
du 
1
dx
dv  dx
vx
x
ln x  x 
1
 x x
dx
x ln x  x  C
ln
x
dx



Example 3:
x
2
u
x
e dx
dv  uv   v du
u  x
u v   v du
du  2 x dx
x e   e  2 x dx
2
x
x
x

x e  2 xe 
2

dv  e dx
x
ve
x
x
x e  2  xe dx
2
2
LIPET
x
x
 e dx
x

This is still a product, so we
x
u
x integration
need to
use
by
dv  e dx
parts again.
x
du  dx
ve
x e dx  x 2 e x  2 xe x  2 e x  C
2
x

Example 4:
e
x
LIPET
u e
cos x dx
x
u e
e sin x   sin x  e dx
x
x

e sin x  e   cos x 
x
  cos x  e dx
x
v du
x
v  sin x
d v  sin x d x
du  e dx
e sin x  e cos x   e cos x dx
x
x
x
uv
x
d v  co s x d x
du  e dx
u v   v du
x
x
v   cos x

This is the
expression we
started with!

Example 4 (con’t):
e
x
u e
cos x dx
x
u e
e sin x   sin x  e dx
x
x

d v  co s x d x
du  e dx
u v   v du
e sin x  e   cos x 
x
x
x
x
d v  sin x d x
du  e dx
x
  cos x  e dx
x
v  sin x
v   cos x

 e cos x dx  e sin x  e cos x   e cos x dx
x
x
x
x
2  e cos x dx  e sin x  e cos x
x
x
x
e sin x  e cos x
x
 e cos x dx 
x
x
2
C
Example 4 (con’t):
e
x
This is called “solving
for the unknown
integral.”
cos x dx
u v   v du
It works when both
factors integrate and
differentiate forever.
e sin x   sin x  e dx
x
x

e sin x  e   cos x 
x
x
  cos x  e dx
x

 e cos x dx  e sin x  e cos x   e cos x dx
x
x
x
x
2  e cos x dx  e sin x  e cos x
x
x
x
e sin x  e cos x
x
 e cos x dx 
x
x
2
C

Integration by Parts
A Shortcut: Tabular Integration
Tabular integration works for integrals of the form:
 f  x  g  x  dx
where:
Differentiates to
zero in several
steps.
Integrates
repeatedly.
Such as:


f
x

2
x
x e dx
g  x  & integrals
& d eriv.
x
2
e
 2x

2
0

x
e
x
e
x
e
x
Compare this with
the same problem
done the other way:
x e dx  x e  2 xe  2 e  C
2
x
2
x
x
x

Example 5:
x
2
u
x
e dx
dv  uv   v du
u  x
u v   v du
2
du  2 x dx
x e   e  2 x dx
2
x
x
x

x e  2 xe 
2
x
x
e
x
dx

x e  2 xe  2 e  C
2
dv  e dx
x
ve
x
x
x e  2  xe dx
2
LIPET
x
x
x
ux
dv  e dx
du  dx
ve
x
x
This is easier and quicker to
do with tabular integration!



3
x sin x dx
3
sin x
 3x2
 cos x
 6x
 sin x
 6
cos x
0
sin x
x
 x cos x  3 x sin x  6 x co s x  6 sin x + C
3
2
p
You Try:
Find
Solution:
Begin as usual by letting u = x2 and dv = v' dx = sin 4x dx. Next, create
a table consisting of three columns, as shown.
Homework:
Day 1: pg. 531, 11-55 EOO, 59-69 odd.
Day 2: MMM BC pgs. 106-107