Chap. 3 - Sun Yat
Download
Report
Transcript Chap. 3 - Sun Yat
Chapter 3. Elementary Functions
Weiqi Luo (骆伟祺)
School of Software
Sun Yat-Sen University
Email:[email protected] Office:# A313
Chapter 3: Elementary Functions
The Exponential Functions
The Logarithmic Function
Branches and Derivatives of Logarithms
Some Identities Involving Logarithms
Complex Exponents
Trigonometric Function
Hyperbolic Functions
Inverse Trigonometric and Hyperbolic Functions
2
School of Software
29. The Exponential Function
The Exponential Function
e e e , z x iy
z
x
iy
Single-Valued
According to the Euler’ Formula
e
iy
cos y i sin y
u(x,y)
v(x,y)
e e cos y ie sin y
z
x
x
Note that here when x=1/n (n=2,3…) & y=0, e1/n denotes the positive nth root of e.
3
School of Software
29. The Exponential Function
Properties
z1
e e
Let
e
z2
z1 z 2
z1 x1 iy1 ; z 2 x 2 +iy 2
e
x 1 +iy1
e
x 2 +iy 2
(e 1 e
x
iy1
Real value:
x
)( e 2 e
( e e )(e e
x1
e
x2
x1 x 2
e
iy1
e
iy 2
x1
)
e e
x2
=e
x1 x 2
Refer to pp. 18
iy 2
)
iy
e 1e
iy 2
e
i(y 1 y 2 )
i(y 1 y 2 )
z1 z 2 ( x1 x 2 )+ i ( y1 y 2 )
z 1 +z 2
4
School of Software
29. The Exponential Function
Properties
e
z1 z 2
e
z2
e
z1
e
z1
e
z2
e
z1 z 2
e
z2
Refer to Example 1 in Sec 22, (pp.68), we have that
d
e e
z
z
everywhere in the z plane
dz
which means that the function ez is entire.
5
School of Software
0
29. The Exponential Function
Properties
e 0
z
e e e
z
x
iy
re
i
For any complex number z
r e & y
x
r | e | e 0 & arg( e ) y 2 n ( n 0, 1, 2, ...)
z
e
z 2 i
x
e e
z
z
2 i
e
z 2 i
e ,e
z
2 i
cos 2 i sin 2 1
which means that the function ez is periodic, with a pure imaginary period of 2πi
6
School of Software
29. The Exponential Function
Properties
e 0
x
For any real value x
while ez can be a negative value, for instance
e
i
cos i sin 1
7
School of Software
29. The Exponential Function
Example
In order to find numbers z=x+iy such that
e 1 i
z
e e e
z
x
e
x
x
iy
2&e
1
2e
iy
ln 2 & y
i / 4
e
i / 4
2 n , ( n 0, 1, 2, ...)
2
1
4
1
z ln 2 i ( 2 n ), ( n 0, 1, 2, ...)
2
4
8
School of Software
29. Homework
pp. 92-93
Ex. 1, Ex. 6, Ex. 8
9
School of Software
30. The Logarithmic Function
The Logarithmic Function
log z ln r i ( 2 n ), ( n 0, 1, 2, ...)
z re
i
0
Please note that the Logarithmic Function is the multiple-valued function.
ln r i
z re
ln r i ( 2 )
i
One to infinite values
ln r i ( 2 )
…
It is easy to verify that
e
log z
e
ln r i ( 2 n )
e
10
ln r
e
i ( 2 n )
re
i
z
School of Software
30. The Logarithmic Function
The Logarithmic Function
log z ln r i ( 2 n ), ( n 0, 1, 2, ...)
z re
i
0
ln | z | i arg( z )
Suppose that 𝝝 is the principal value of argz, i.e. -π <𝝝 ≤π
L o g z ln r iA rg ( z ) ln r i
is single valued.
And
log z L ogz i 2 n , n 0, 1, 2, ...
11
School of Software
30. The Logarithmic Function
Example 1
log( 1
log( 1
3 i ) log(2 e
3i ) ?
i ( 2 / 3 )
ln 2 i (
)
2
2 n ), n 0, 1, 2...
3
12
School of Software
30. The Logarithmic Function
Example 2 & 3
log 1 ln 1 i (0 2 n ) 2 n i , n 0, 1, 2, ...
L og 1 0
log( 1) ln 1 i ( 2 n ) (2 n 1) i , n 0, 1, 2, ...
L og ( 1) i
13
School of Software
31. Branches and Derivatives of Logarithms
The Logarithm Function
log z ln r i ( 2 n ), n 0, 1, 2, ...
where𝝝=Argz, is multiple-valued.
If we let θ is any one of the value in arg(z), and let α denote any
real number and restrict the value of θ so that
2
The above function becomes single-valued.
log z ln r i , ( r 0, 2 )
With components
u ( r , ) ln r & v ( r , )
14
School of Software
31. Branches and Derivatives of Logarithms
The Logarithm Function
log z ln r i , ( r 0, 2 )
is not only continuous but also analytic throughout the
domain
r 0, 2
A connected open set
?
15
School of Software
31. Branches and Derivatives of Logarithms
The derivative of Logarithms
log z ln r i , ( r 0, 2 )
u ( r , ) ln r & v ( r , )
ru r v & u rv r
d
log z e
i
dz
d
dz
L og z
( u r iv r ) e
i
(
1
r
i 0)
1
re
i
1
z
1
z
16
School of Software
31. Branches and Derivatives of Logarithms
Examples
When the principal branch is considered, then
Log ( i ) Log ( i )
3
ln 1 i
2
And
3 L og ( i ) 3(ln 1 i
)
2
i
2
3
i
2
Log ( i ) 3 Log ( i )
3
17
School of Software
31. Homework
pp. 97-98
Ex. 1, Ex. 3, Ex. 4, Ex. 9, Ex. 10
18
School of Software
32. Some Identities Involving Logarithms
log( z1 z 2 ) log z1 log z 2
z1 r1 e
where
i 1
0 & z 2 r2 e
i
log( z1 z 2 ) log( r1 e 1 r2 e
i 2
i 2
0
) ln( r1 r2 ) i ( 1 2 2 n )
ln r1 ln r2 i ( 1 2 n1 ) i ( 2 2 n 2 )
[ln r1 i ( 1 2 n1 )] [ln r2 i ( 2 2 n 2 )]
(ln | z1 | i arg z1 ) (ln | z 2 | i arg z 2 )
log z1 log z 2
log(
z1
z2
n n1 n 2
1
1
) log( z1 z 2 ) log z1 log z 2 log z1 log z 2
19
School of Software
32. Some Identities Involving Logarithms
Example
z1 z 2 1
log( z1 z 2 ) log(1) 2 n i
log( z1 ) log( z 2 ) log( 1) (2 n 1) i
log z1 log z 2 (2 n1 1) i (2 n 2 1) i 2( n1 n 2 1) i
2 n i log( z1 z 2 )
20
n n1 n 2 1
School of Software
32. Some Identities Involving Logarithms
When z≠0, then
z e
n
n log z
1
z
1/ n
e
z e
c
( n 0, 1, 2, ...)
log z
n
c log z
( n 1, 2, 3 ...)
Where c is any complex number
21
School of Software
32. Homework
pp. 100
Ex. 1, Ex. 2, Ex. 3
22
School of Software
33. Complex Exponents
Complex Exponents
When z≠0 and the exponent c is any complex number,
the function zc is defined by means of the equation
z e
c
c log z
where logz denotes the multiple-valued logarithmic
function. Thus, zc is also multiple-valued.
The principal value of zc is defined by
z e
c
cL og z
23
School of Software
33. Complex Exponents
If z re i and α is any real number, the branch
log z ln r i
( r 0, 2 )
Of the logarithmic function is single-valued and analytic in the indicated domain.
When the branch is used, it follows that the function
z exp( c log z )
c
is single-valued and analytic in the same domain.
d
dz
z
c
d
exp( c log z )
dz
c
exp( c log z )
z
24
School of Software
33. Complex Exponents
Example 1
i
log i ln 1 i (
2 i
exp( 2 i log i )
2 n ) (2 n
2
i
2 i
1
) i , ( n 0, 1, 2, ...)
2
exp[(4 n 1) ], ( n 0, 1, 2, ...)
Note that i-2i are all real numbers
25
School of Software
33. Complex Exponents
Example 2
The principal value of (-i)i is
exp( iL og ( i )) exp( i (ln 1 i
2
P.V.
i
i
exp
)) exp
2
2
26
School of Software
33. Complex Exponents
Example 3
The principal branch of z2/3 can be written
exp(
2
L ogz ) exp(
3
2
ln r
3
2
i )
3
3
2
r exp( i
2
)
3
Thus
2
P.V.
z3
3
2
r cos
2
i r sin
3
2
3
2
3
This function is analytic in the domain r>0, -π<𝝝<π
27
School of Software
33. Complex Exponents
Example 4
Consider the nonzero complex numbers
z1 1 i , z 2 1 i & z 3 1 i
When principal values are considered
( z1 z 2 ) 2 e
i
i
z3 e
i
/ 4
e
iL og (1 i )
e
iL og ( 1 i )
e
z2 e
e
iLog 2
iLog (1 i )
z1 e
i
i
/4
e
e
3 / 4
i ln 2
( z 2 z 3 ) ( 2) e
i
iL og
( - 2)
( z1 z 2 ) z1 z 2
i (ln 2 ) / 2
i
i (ln 2 ) / 2
e
i
i
i
( z2 z3 ) z 2 z3 e
i
i
e
i
2
i (ln 2 ) / 2
28
School of Software
e
i ln 2
33. Complex Exponents
The exponential function with base c
c e
z
z log c
Based on the definition, the function cz is multiple-valued.
And the usual interpretation of ez (single-valued) occurs when the principal
value of the logarithm is taken. The principal value of loge is unity.
When logc is specified, cz is an entire function of z.
d
dz
c
z
d
e
z log c
e
z log c
log c c log c
z
dz
29
School of Software
33. Homework
pp. 104
Ex. 2, Ex. 4, Ex. 8
30
School of Software
34. Trigonometric Functions
Trigonometric Functions
Based on the Euler’s Formula
e
ix
cos x i sin x & e
e e
ix
sin x
ix
ix
& cos x
iz
sin z
2i
cos x i sin x
e e
2i
e e
ix
ix
Here x and y are real numbers
2
iz
e e
iz
& cos z
iz
Here z is a complex number
2
31
School of Software
34. Trigonometric Functions
Trigonometric Functions
e e
iz
sin z
iz
e e
iz
& cos z
2i
iz
2
Both sinz and cosz are entire since they are linear combinations
of the entire Function eiz and e-iz
d
dz
sin z cos z &
d
cos z sin z
dz
32
School of Software
34. Homework
pp.108-109
Ex. 2, Ex. 3
33
School of Software
35. Hyperbolic Functions
Hyperbolic Function
e e
z
sinh z
z
e e
z
, cosh z
2
z
2
Both sinhz and coshz are entire since they are linear combinations
of the entire Function eiz and e-iz
d
dz
d
sinh z cosh z ,
cosh z sinh z
dz
34
School of Software
35. Hyperbolic Functions
Hyperbolic v.s. Trgonometric
i sinh( iz ) sin z & cosh( iz ) cos z
i sin( iz ) sinh z & cos( iz ) cosh z
35
School of Software
35. Homework
pp. 111-112
Ex. 3
36
School of Software
36. Inverse Trigonometric and Hyperbolic Functions
In order to define the inverse sin function sin-1z, we write
1
w sin
sin w z
e
iw
e
z
sin w z
When
iw
( e ) 2 iz ( e ) 1 0
iw
2i
e
iw
2
iz (1 z )
2 1/ 2
w sin
Similar, we get
cos
1
tan
1
iw
1
z i log( iz (1 z )
2 1/ 2
z i log( z i (1 z )
2 1/ 2
z
i
2
lo g
i z
iz
)
Multiple-valued functions.
One to infinite many values
Note that when specific branches of the square root and logarithmic functions are used,
all three Inverse functions become single-valued and analytic.
37
)
School of Software
36. Inverse Trigonometric and Hyperbolic Functions
Inverse Hyperbolic Functions
sinh
cosh
tanh
1
z log[ z ( z 1)
1
z log[ z ( z 1)
1
2
2
z
1
2
log
1/ 2
1/ 2
]
]
1 z
1 z
38
School of Software
36. Homework
pp. 114-115
Ex. 1
39
School of Software