Optical Resonators for Frequency Combs

Download Report

Transcript Optical Resonators for Frequency Combs

Vernier spectroscopy
A broad band cavity enhanced spectroscopy method with cw laser
resolution
Christoph Gohle, Albert Schliesser, Björn Stein, Akira Ozawa,
Jens Rauschenberger, Thomas Udem, Theodor W. Hänsch
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
1
Outline
•
•
•
•
•
Cavity enhanced spectroscopy
Broad band cavity enhanced methods
Adding phase sensitivity
The optical vernier
Conclusion
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
2
Fabry perot resonators
light source
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
3
… enhance sensitivity
• Cavity enhanced
absorption
spectroscopy (CEAS)
– Increased interaction
length (
), i.e.
sensitivity
/

¡ r
• Cavity ring down
(CRD)
– Rejects source noise
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
4
Broad band CEAS
R
BB-Source (S)
T
• Broadband input source
– Low transm. (1 )
p
– Sens. gain ~ F
Spectrometer
S
R
• Frequency comb input*
– Sens. gain ~ F
– Ringdown method using
streak camera possible**
– Narrow probe frequencies
(if resolved)
T
S
R
T
*Gherman, T. & Romanini, D., Optics Express, 10, 1033-1042 (2002)
**Thorpe, M.J. et al., Science, 311, 1595-1599 , 2006
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
5
Comb matching
laser
frequency
comb
passive cavity
• In general r and ' will be complicated functions of !
… and the two combs can not be lined up
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
6
Adding phase sensitivity to
CEAS
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
7
'
Snowbird, 2007
Moiré pattern
Broad band cavity enhanced Vernier spectroscopy
8
Scanning the comb
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
9
With bad resolution
/

¡ r
!

 !
Á
 
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
10
Extract the information
es !
Á
E




Snowbird, 2007


r
!
Á
  !
Broad band cavity enhanced Vernier spectroscopy
11
Some results
• Yields both loss and
dispersion
• Frequency comb is a
“dispersion free” reference
• Sensitivity ~ Finesse
• Demonstrated sens.: 10-6/cm,
1fs2@2THz resolution
• Resolution limited by
spectrometer
• May be useful for survey
trace gas detection
A. Schliesser et al., Optics Express, 14, 5975-5983 (2006)
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
12
What about the comb?
The optical Vernier
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
13
Idea
n = n r +CE
n n+1
c
m!
n r
Requirements:
• Finesse > m
• mr > spec. resolution
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
14
Model
Close to a spot (k,l) the contributions
of all other frequencies can be
neglected:
…
3
2
1
k=0
l=0 1 2 3 …
Scanning length:
Sample absorbtion:
Y calibration:
Identified comb modes: k+m,l=k,l+1!2=(yk+m,l-yk,l+1)/c Assuming: n(k,l+1)=1
Steady state condition: one line width in more than one lifetime:
Scanspeed < ( FSR)2/Finesse2
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
15
Implementation
CCD
grating
lens
Air
Resonator Finesse ~ 3000
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
16
Data
Snowbird, 2007
•
Single scan
(10ms)
•
Blue box:
unique data
•
Red boxes:
identified
features
•
Gaussian PSF
much larger
than airy !
Brightness~Int
egral of airy
Broad band cavity enhanced Vernier spectroscopy
17
Results*
Absorbtion:
•Noisefloor
O2 A-Band
< 10-5/cm (100 Hz)1/2=
< 10-6/cm Hz1/2
•> 4 THz bandwidth
1 GHz sampling (>4000 res.
Datapoints in 10 ms)
•Quantitative agreement in
Amplitude and Frequency
to HITRAN** database
Phase:
*looks good (dispersive features)
*not optimized for good phase sensitivity
* To be published in the near future
** Rothman, L. S. et al., J. Quant. Spect. Rad. Trans., 96, 139-204 (2005)
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
18
Conclusions
• Pro’s
–
–
–
–
–
–
–
–
Comb resolution (i.e. Hz level if desired)
Fast (partly parallel acquisition)
Simple
Large bandwidth
Amplitude AND Phase sensitivity
Self calibrating
Reproducibility limited by primary frequency standard only
Subdoppler methods easily conceivable
• Con
Thank you for your attention!
– Transmitted power ~ 1/Finesse
– Sensitivity Gain ~ Finesse1/2 only (for shot noise limited
detection)
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
19
Thanks
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
20
Optical Resonators
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
21
… enhance nonlinear conversion
• Pc=F/
– Output power grows
with finesse2 or
higher!
• Example:
– SHG 560nm->280nm
– 900mW driving power
– 20% conversion:
900mW->200mW
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
22
Fs-Frequency Comb
Spectroscopy
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
23
Basics
f=0
f=/2
f=
cosine-pulse
sine-pulse
+
-
cosine-pulse
E(t)=A(t)eict = S Am e-imrt-ict
m=-
!n = n!r + !CE
!CE=ÁCE/T
I()
c
1
• Optical clockwork, connects optical and radio
frequency
• 106 phaselocked cw-lasers for high accuracy
spectroscopy
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
24
Spectroscopy with Combs
300 THz band width
and 100 MHz mode
spacing.
I(1)
300 THz
1
3,000,000 modes with 0.3 mW power
spectrosopy with a single mode hard but possible:
V.Gerginov et al. Optics Letters, 30, 1734 (2005)
1
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
25
Two photon spectroscopy
all modes contribute.
I(1)
like a cw laser.
1
Pionieered by: Ye.V.Baklanov, V.P.Chebotayev, Appl. Phys 12, 97 (1977) and M.J.Snadden, A.S.Bell, E.Riis, A.I.Ferguson, Opt. Comm. 125, 70 (1996)
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
26
… recent results
8s F= 4
1/2
8s F= 3
4.2 µm
1/2
7p
• Cs 6S-8S two photon
transition
ºs¡s
F    




ºs¡s
F    




822 nm
456 nm
80
(a)
photon count rat$ (kHz)
fr$p / 2
6s F= 3
1/2
6s F= 3
1/2
65
50
0
20
40
fr$qu$ncy shift at 820 nm (MHz)
(b)
9000
7000
data-fit (%)
Similar method: A. Marian et al, PRL, 95, 023001 (2005)
photon count rat$ (Hz)
11000
Peter Fendel et al., (… almost submitted)
5
0
-5
-4
Snowbird, 2007
60
-2
0
2
fr$qu$ncy shift at 820 nm (MHz)
Broad band cavity enhanced Vernier spectroscopy
4
27
Comb Spectroscopy?
• Fs-frequency combs combine
– High peak power of a fs-laser
– High spectral quality of cw-laser
• Good for applications where there are
no continous lasers available
–
First impressive steps: S. Witte et al., Science, 307, 400 (2005)
• Highly nonlinear spectroscopy?
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
28
High Accuracy at high Energy?
• Planck Scale
• Frequency measurements
– Optical atomic clocks
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
29
Hydrogen like
He+
• He+ is an ion
– Can be trapped and
cooled
– Long interaction times
– Reduced (eliminated)
Doppler broadening &
shift
– Control over other
systematics
– Reduced (no) recoil
Hydrogen
Z - Scaling
Helium
Energy levels
1S-2S: 10eV
Z2
40 eV ~ 60 nm
Lamb shift
1S: 8GHz
Z4
128 GHz
Z6
64 times stronger
Unverified QED correc.
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
30
Optical Resonators for
Frequency combs
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
31
Fs-Buildup resonator
• Enhance entire frequency comb
• Produce XUV frequency comb
– Via high order harmonic generation
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
32
Real resonator
seed laser:
Pavg =
t
=
Ppeak =
Snowbird, 2007
700 mW
20 fs
300 kW
F=¼  
x55
x40
intracavity:
Pavg =
t
=
Ppeak =
38 W
28 fs
12 MW
Broad band cavity enhanced Vernier spectroscopy
33
XUV Output
C. Gohle et al., Nature, 436, 234 (2005)
R. J. Jones et al., PRL, 94, 193201 (2005)
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
34
High Harmonics Hierarchy
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
35
Coherence (of the 3rd harm.)
C. Gohle et al., Nature, 436, 234 (2005)
R. J. Jones et al., PRL, 94, 193201 (2005)
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
36
Real resonator
seed laser:
Pavg =
t
=
Ppeak =
Snowbird, 2007
700 mW
20 fs
300 kW
F=¼  
x55
x40
intracavity:
Pavg =
t
=
Ppeak =
38 W
28 fs
12 MW
Broad band cavity enhanced Vernier spectroscopy
37
Complete resonator
characterization
With high sensitivity
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
38
Experimental Setup
f-to-2f interferometer photodiode+counter
2x piezo-actuated mirrors
silica wedges in laser
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
39
Data from an “empty” cavity
A. Schliesser et al., Optics Express, 14, 5975-5983 (2006)
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
40
Result
•to cover entire spectrum, perform multiple measurements with different lock points
(here 780.5 and 801.0 nm)
•wide bandwidth: 150nm
•„wiggles“ at 760 and 825 nm?
•empirical reproducibility: 1fs² in GDD (1.6 THz BW) and 4*10-4 in r
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
41
Verification
Sapphire plate @
Brewster‘s angle
2 identical highreflectivity
dielectric stack
mirrors
Measurement of cavity before and after insertion of additional components
yields individual contributions.
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
42
Empty cavity?
•to cover entire spectrum, perform multiple measurements with different lock points
(here 780.5 and 801.0 nm)
•wide bandwidth: 150nm
•„wiggles“ at 760 and 825 nm?
•empirical reproducibility: 1fs² in GDD (1.6 THz BW) and 4*10-4 in r
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
43
Comparison with simulation
HITRAN data,
convoluted with
spectrometer
ILS and
multiplied with
0.98
HITRAN data
(RT, 1atm, 21%)
Phase excursion
~10-3 rad
(on top of a simple
quadratic phasedep.)
 n ~ 5 £ 10-11
L. S. Rothman et al., The HITRAN 2004 molecular spectroscopic database," J. Quant. Spect. Rad. Trans. 96, 139204, (2005)
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
44
Air filled resonator!
O2
H2O
•to cover entire spectrum, perform multiple measurements with different lock points
(here 780.5 and 801.0 nm)
•wide bandwidth: 150nm
•„wiggles“ at 760 and 825 nm?
•empirical reproducibility: 1fs² in GDD (1.6 THz BW) and 4*10-4 in r
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
45
Outlook
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
46
High power XUV comb
seed laser: 10 MHz CPO (120 nJ; 30 fs)
Reflected Power (AC-Coupled)
enhancement cavity:
vacuum setup (3.5 m length)
Powerspectrum [au]
16
14
12
Laser
Resonator
10
8
6
4
2
750
775
800
Wavelength [nm]
825
0.20
11ms decay -> Finesse 300
0.15
0.10
0.05
0.00
-0.05
-0.10
-0.15
-0.20
-10
0
10
20
30
40
50
Time [µs]
Input: 120nJ, 30fs, 4MW peak
x 100
12µJ, 30fs, 400MW peak
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
47
Cooling laser system
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
48
Helium Spectroscopy
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
49
… provide stable references
• Narrow Markers in
Frequency space
=F
– If high finesse
• High stability
– ~10-14 @ 1 s
– Few Hz linewidth @ 1
PHz
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
50
Experimental Setup
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
51
Laser Lock
Mutual fluctuations of laser/high-F cavity length make a lock at one
frequency necessary. Active feedback keeps both on resonance at
!
lock: Ã
!


 Á  7! 
¡
Á 
!
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
52
Analysis when locked




Ã


r
!
Á
  !
!
@
!


¡  
¡
Á
!    
!
 
@!
!
Snowbird, 2007
Broad band cavity enhanced Vernier spectroscopy
53
O2?
Air: 21% Oxygen
Molecular oxygen „A“ band ~760 nm
M. J. Thorpe et al.: Precise measurements of optical cavity
dispersion and mirror coating properties via
femtosecond combs. Opt. Exp. 13, 882 (2005)
Snowbird, 2007
J. Zhang et al.: Precision measurement of the refractive
index of air with frequency combs. Opt. Lett. 30, 3314
(2005)
Broad band cavity enhanced Vernier spectroscopy
54