Transcript clocks2
Precision Tests of Fundamental Physics using Strontium Clocks Matt Jones Outline 1. 2. 3. 4. Atomic clocks The strontium lattice clock Testing fundamental physics Entanglement and clocks Atomic clocks • The second “The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between two hyperfine levels of the ground state of the caesium 133 atoms (at 0K).” • The metre: “The metre is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second.” Current accuracy: 1 × 10-15 Cs primary standard Oscillator Feedback Source: NIST Counter Ramsey interferometry F=4 9.2 GHz F=3 t recombine split 0 1 2 0 1 1 0 2 e i ( 0 )t 1 0 1 Ramsey interferometry PTB R. Wynands and S. Weyers, Metrologia 42 (2005) S64-S79 Doing better •Higher Q Q Trapped atoms Optical transitions •No collisions Strontium lattice clock 1P 1 3P 461 nm G/2p = 32 MHz 2 1 0 1S 0 698 nm G/2p = 1 mHz M. Takamoto et al., Nature 435, 321 (2005) Magic lattices •No Doppler shift •Long interrogation times •Reduced collisions Optical clockwork Lasers need <1 Hz linewidth! Femtosecond frequency comb (Nobel Prize 2005) MPQ/Bath University Counters: Ye group JILA Oscillators: Optical atomic clocks Courtesy of H. Margolis, NPL Current state-of-the-art: Single ions: 1 × 10-17 Lattice clocks: 1 × 10-16 C. W. Chou et al., quant-ph/0911.4572 (2010) M. D. Swallow et al., quant-ph/1007.0059 (2010) G. K. Campbell et al., Metrologia 45, 539 (2008) Testing fundamental physics •Relativity 10-16 is a difference in height of just 1m •Time variation of fundamental constants •Non-Newtonian short range forces Time variation of fundamental constants Motivation •Cosmology Some models predict that and µ were different in the early universe •Unified field theories Constants couple to gravity Implies a violation of Local Position Invariance Principle Measure how ωSr/ωCs varies with time Sr SR Cs Cs K rel Sr Cs K rel 2 Results / ( 3.1 3.0 ) 10 / (1.5 1.7 ) 10 16 15 / yr / yr Short-range forces Do theories with compactified dimensions modify gravity at short range? Lattice clocks at Durham EPSRC proposal: “Entanglement-enhanced enhanced optical frequency metrology using Rydberg states” Collaborators: National Physical Laboratories University of Nottingham Panel sits tomorrow!! Lattice clocks at Durham Normal clock 1/ N Entangled clock 1/ N N N 1 0 1 2 N 1 2 0 1 , 0 2 ,K 0 N 11,1 2 ,K 1 N Summary •Atomic clocks provide the most accurate measurements •Optical atomic clocks have lead to a new frontier •This can be used for precision tests of our fundamental theories References Fountain clocks R. Wynands and S. Weyers, Metrologia 42 (2005) S64-S79 Optical clocks M. Takamoto et al., Nature 435, 321 (2009) C. W. Chou et al., quant-ph/0911.4572 (2010) M. D. Swallow et al., quant-ph/1007.0059 (2010) G. K. Campbell et al., Metrologia 45, 539 (2008) Fundamental physics tests S. Blatt et al., Phys. Rev. Lett. 100, 140801 (2008) P. Wolf et al., Phys. Rev. A 75, 063608 (2007) F. Sorrentino et al., Phys. Rev. A 79, 013409 (2009)