Transcript clocks2

Precision Tests of Fundamental Physics
using Strontium Clocks
Matt Jones
Outline
1.
2.
3.
4.
Atomic clocks
The strontium lattice clock
Testing fundamental physics
Entanglement and clocks
Atomic clocks
• The second
“The second is the duration of 9 192 631 770 periods of the radiation
corresponding to the transition between two hyperfine levels of the ground
state of the caesium 133 atoms (at 0K).”
• The metre:
“The metre is the length of the path travelled by light in vacuum during
a time interval of 1/299 792 458 of a second.”
Current accuracy: 1 × 10-15
Cs primary standard
Oscillator
Feedback
Source: NIST
Counter
Ramsey interferometry
F=4
9.2 GHz
F=3
t
recombine
split
  0
 
1
2



 0 
1 
1
0
2
e
i (    0 )t

1

  0 1
Ramsey interferometry
PTB
R. Wynands and S. Weyers, Metrologia 42 (2005) S64-S79
Doing better
•Higher Q
Q 

Trapped atoms

Optical transitions
•No
 collisions
Strontium lattice clock
1P
1
3P
461 nm
G/2p = 32 MHz
2
1
0
1S
0
698 nm
G/2p = 1 mHz
M. Takamoto et al., Nature 435, 321 (2005)
Magic lattices
•No Doppler shift
•Long interrogation times
•Reduced collisions
Optical clockwork
Lasers need <1 Hz linewidth!
Femtosecond frequency comb
(Nobel Prize 2005)
MPQ/Bath University
Counters:
Ye group JILA
Oscillators:
Optical atomic clocks
Courtesy of H. Margolis, NPL
Current state-of-the-art:
Single ions:
1 × 10-17
Lattice clocks: 1 × 10-16
C. W. Chou et al., quant-ph/0911.4572 (2010)
M. D. Swallow et al., quant-ph/1007.0059 (2010)
G. K. Campbell et al., Metrologia 45, 539 (2008)
Testing fundamental physics
•Relativity
10-16 is a difference in height of just 1m
•Time variation of fundamental constants
•Non-Newtonian short range forces
Time variation of fundamental constants
Motivation
•Cosmology
Some models predict that  and µ were different in the early universe
•Unified field theories
Constants couple to gravity
Implies a violation of Local Position Invariance
Principle
Measure how ωSr/ωCs varies with time
 Sr
 SR
 Cs


 Cs
 K rel
Sr



Cs
K rel

2





Results
 /   ( 3.1  3.0 )  10
 /   (1.5  1.7 )  10
 16
 15
/ yr
/ yr
Short-range forces
Do theories with compactified dimensions modify gravity at short range?
Lattice clocks at Durham
EPSRC proposal:
“Entanglement-enhanced enhanced optical frequency
metrology using Rydberg states”
Collaborators:
National Physical Laboratories
University of Nottingham
Panel sits tomorrow!!
Lattice clocks at Durham
Normal
clock
  1/ N
Entangled
clock 
  1/ N

N
N

 1
 
 0  1 
 2

N 
1
2
 0 1 , 0 2 ,K
0 N  11,1 2 ,K 1 N

Summary
•Atomic clocks provide the most accurate measurements
•Optical atomic clocks have lead to a new frontier
•This can be used for precision tests of our fundamental theories
References
Fountain clocks
R. Wynands and S. Weyers, Metrologia 42 (2005) S64-S79
Optical clocks
M. Takamoto et al., Nature 435, 321 (2009)
C. W. Chou et al., quant-ph/0911.4572 (2010)
M. D. Swallow et al., quant-ph/1007.0059 (2010)
G. K. Campbell et al., Metrologia 45, 539 (2008)
Fundamental physics tests
S. Blatt et al., Phys. Rev. Lett. 100, 140801 (2008)
P. Wolf et al., Phys. Rev. A 75, 063608 (2007)
F. Sorrentino et al., Phys. Rev. A 79, 013409 (2009)