UMTS TOUT IP

Download Report

Transcript UMTS TOUT IP

UMTS TOUT IP

GROUPE 1 FAISAL SHERAZ WASIQ THIAM All rights reserved for DESS-IRS 1

Presentations

 Architecture du UTRAN avec IP Moussa Equipement Terminal Sheraz RNC  Services (IP) WASIQ OSA / VHE (VoIP) QOS Faisal Multicast All rights reserved for DESS-IRS 2

UMTS TOUT IP

All rights reserved for DESS-IRS 3

MODELE EN COUCHES

All rights reserved for DESS-IRS 4

• Couches de protocole dans UMTS RNS UTRAN

E.g., IP,PPP UDP/ P I GTP U UDP/ IP GTP U UDP/ IP WCDM A Node-B RNC

UE

E.g., IP,PPP UDP/ IP

All rights reserved for DESS-IRS 5

UMTS TOUT IP

All rights reserved for DESS-IRS 6

CONCEPT WCDMA MULTIPLEXAGE

• • • • • FDD EN FREQUENCE BANDES APPAIREES 2 PORTEUSES (liaisons montante et descendante)pour utilisation courante TDD EN TEMPS 1 PORTEUSE(utilisation haut debit) All rights reserved for DESS-IRS 7

LES CANAUX DE L’INTERFACE RADIO

All rights reserved for DESS-IRS 8

All rights reserved for DESS-IRS 9

UMTS TOUT IP

All rights reserved for DESS-IRS 10

UMTS TOUT IP

All rights reserved for DESS-IRS 11

NŒUD B(station de base dans UMTS)

• • • • GESTION DE LA COUCHE PHYSIQUE DE L’INTERFACE AIR CODAGE DU CANAL ENTRELACEMENT ADAPTATION DU DEBIT All rights reserved for DESS-IRS 12

UMTS TOUT IP

All rights reserved for DESS-IRS 13

U

TRAN

( UMTS Terrestrial Radio Acces Network)

Two major elements; a) b) RNC Node B (Radio Network Controller) RNC (Radio Network Controller), which own and controls the radio resources in its domain i.e. the Node Bs connected. RNC is the service access point for all services UTRAN provides to CN.

MSC,SGSN and HLR can be extended to UMTS requirements.

RNC and Node B are completely new designs.

All rights reserved for DESS-IRS 14

All rights reserved for DESS-IRS 15

PSTN/ISDN MSC UTRAN RNC BTS GMSC IP HLR GGSN SGSN

UTRAN transport: ATM New tricks: Soft Handover UTRAN: Terrestrial Radio Access Network RNC: Radio Network Controller

All rights reserved for DESS-IRS 16

All rights reserved for DESS-IRS 17

Goal

 Maximization in handling of packet switched switched data.

and circuit  IP based protocols such RTP (data transport) (Signaling control) protocols and SIP  ATM is currently main transport mechanism in the UTRAN.

All rights reserved for DESS-IRS 18

All rights reserved for DESS-IRS 19

Primary functions RNC

! Uplink and downlink signal transfer ! Mobility ! Add and delete cells during soft hand-off ! Macro-diversity during handover ! Uplink Outer Loop Power Control functionality ! Downlink Power Control ! Controls common physical channels, which are used by multiple users ! Interfaces with SGSN and MSC/VLR All rights reserved for DESS-IRS 20

Types of RNC

1.

2.

1.

CRNC

(Controlling RNC)

Responsible for the load and congestion control of its own cells SRNC

(Serving RNC)

Terminates both Iu link for the transport of user data and the corresponding RANAP signaling to/from the core network.

DRNC

(Drift RNC)

Controls cells used by the mobile. When is required the DRNC performs macro-diversity combining and splitting.

All rights reserved for DESS-IRS 21

Protocol for UTRAN Interfaces

All rights reserved for DESS-IRS 22

Layered Architecture

Horizontal layers have two main layers:

! Radio Network layer ! Transport Network Layer

Vertical planes have four main planes:

! Control Plane ! User Plane ! Transport Network Control Plane ! Transport Network User Plane

All rights reserved for DESS-IRS 23

All rights reserved for DESS-IRS 24

IP implementation

All rights reserved for DESS-IRS 25

Diversified positions in UMTS

Most important issues that are emphasize • • SSCF layer SSCOP layer specifically designed for transport in ATM networks and which take care of solutions such as signaling connection management.

Already IP based consists;     M3UA (SS7 MTP3 _user adaptation Layer) SCTP (Simple Control Transmission Protocol) IP (Internet Protocol), AAL5(ATM Adaptation Layer 5).

All rights reserved for DESS-IRS 26

IP implementations in Iur

• • • • Application layer, RNSAP, connects to its signaling bearer via an SCCP-SAP (Service Access Point).

Signaling bearer is ATM based. The SCCP layer provides both connectionless and connection-oriented service.

Below SCCP, the operator is able to select from one of two switches a) MTP3-B/SCCFNNI/SSCOP b) SCTP/IP.

All rights reserved for DESS-IRS 27

Glossary

UMTS RNC CN SGSN GPRS USIM Uu Iub Iur GSMC PLMN GGSN SSCF SSCOP Protocol Universal Mobile Transmission System Radio Network Controller Core Network Serving GPRS Node Global Packet Radio Service UMTS Subscriber Identity Module UMTS air interface Interface between Node B and RNC Interface between two RNC Gateway MSC Public Land Mobile Network Gateway GPRS Support Node Service Specific Coordination Function Service Specific Connection Oriented

All rights reserved for DESS-IRS 28

Toward an All-IP Based UMTS System Architecture

All rights reserved for DESS-IRS 29

Transitions

• • Shift from R99 to R00 standard – Replacment of Circuit Switced transport technology by Packet technology – Introduction of multimedia support in the UMTS Core Network Evolution of Open Service Architecture (OSA) – Apart from the official bodies ( 3GPP, 3GPP2) other partnerships and foras started polling in to the success of an all-IP based UMTS architecture.

All rights reserved for DESS-IRS 30

The 2 Trends

• • The trend in the design of UMTS architecture to standardize Open Network Interface

service

The trend in the design of the UMTS

network

architecture to move towards an IP based approach All rights reserved for DESS-IRS 31

OSA

• • Obliged network operators to provide third party service providers access to their UMTS service architecture via open standardized interfaces Development of OSA interfaces through the Parlay/OSA API – API presented by the “Joint API Group” consisting of Parlay and 3GPP All rights reserved for DESS-IRS 32

OSA/Parley API

• Parlay APIs try to open telecommunication networks to third party service providers.

All rights reserved for DESS-IRS 33

• A change in business model has introduced new players in the telecomm business Some want to address Some prefer to do it users directly via the Network Operator connectivity + services connectivity

User User Operator Operator

connectivity services connectivity

New Player New Player

But they have something in common: They compete in the services market...

and they have

no network

!

THE TECHNICAL ENABLER = PARLAY/OSA All rights reserved for DESS-IRS 34

Presence of Parley/OSA

Services/application layer Control layer Service Capability Servers Connectivity layer Core & Radio Networks 2G 2.5G & 3G

All rights reserved for DESS-IRS

Parlay / OSA OSA/Parlay API’s exposing network service capabilities Distribution via middleware

35

App1 App2 AppN Applications (independent of underlying network technology) Parlay/OSA API OSA Gateway 3GPP ETSI Parlay JAIN Network Mapping to network specific protocols Network complexity hidden from applications

All rights reserved for DESS-IRS 36

Open Service Architecture

All rights reserved for DESS-IRS 37

All rights reserved for DESS-IRS 38

Role of SCS in service provisioning

• • • • • UMTS Call Control Servers HLR MExE SAT CAMEL All rights reserved for DESS-IRS 39

From OSA to VHE

• Intervention of European Commission – Opening of application interfaces towards the networks – Liberalization of telecommunication services market – Enhancing portability of telecommunication services between network and terminals – Service portability = Virtual Home Environment (VHE) All rights reserved for DESS-IRS 40

Virtual Home Environment (VHE)

• Concept – Provide user an environment to access the services of his home network/service provider even while roaming in the domain of another network provider.

All rights reserved for DESS-IRS 41

Introduction to VoIP in Mobile

Moving towards an all IP Network All rights reserved for DESS-IRS 42

VoIP – pros and cons

• Advantages – Lower equipment cost – Easier management of network – Usage of Techniques like silence suppression • Hence lower communication cost to user – Use of end to end IP, opens path to multimedia over IP services like video conferencing – Using same technology (IP services) in fixed and mobile networks facilitates internetworking • Disadvantage – QoS • Delays by handover • • Scarce radio resources Admission control All rights reserved for DESS-IRS 43

Enabling Packets

• • • • • MSC division – MSC for Call Control – MG for switching (IP Router) • MG at the UTRAN side • MG at the PSTN side MGCF for MG Signaling Gateway CSCF (Call State Control Function) HSS All rights reserved for DESS-IRS 44

Interworking Two Worlds

• •

Signaling Gateway SS7 over IP Connects control and service

elements Bridges service elements of IN and SIP IN/AIN Network

• • •

Media Gateway Controller Call state Control of Media Gateways Authorization, verification & settlement Circuit Switch ATM SONET/SDH Optical Layer Signaling Gateway Media Gateway Media Gateway Controller IP/ATM Router Optical DWDM SIP Server Video Server Application Server

Media Gateway Media adaptation

• •

Addressing Usage and QoS information

All rights reserved for DESS-IRS 45

• • For transport of Data Traffic – UMTS uses GPRS For transport of Voice Calls – Packet Switched mobile terminals • Calls transmitted using GTP • • GTP works over IP All Mobility dealt with by GPRS – Circuit Switched mobile terminals • Voice samples travel between MGs using IP using Iu Frame Protocol (FP).

• • No GTP MG Handover All rights reserved for DESS-IRS 46

2 Scenarios for Providing VoIP Services

1.

– – SoftSSP Concept : INAP / CAP support of VOIP • Previously implementation of service logic from network switch • NOW – IN allows controlling the service from a centralized point (SCP) outside the switch IN relies on SSPs in the switches to trigger the SCP via the IN Application Part (INAP) protocol when IN service control is needed. Power of IN/CAMEL in complexity of SSP and INAP/CAP All rights reserved for DESS-IRS 47

SoftSSP (Continued…)

• • • the SSP contains a mapping determines which point in the MSC call state model needs to trigger which point in the state model of the IN/CAMEL service logic The more complex the mapping, the more complex the service All rights reserved for DESS-IRS 48

SoftSSP (Continued…)

• • IN/CAMEL on a SIP server – Develop SSP on top of SIP Server – a mapping between the SIP call state model and the state model of the IN/CAMEL service logic – This kind of SSP is called as SoftSSP Investment on CAMEL can be reused for providing VoIP on a CSCF.

– Billing and database handling process can be reused from the R99 SSP circuit-switched call control All rights reserved for DESS-IRS 49

Direct Third Party Call Control OSA Support for VoIP(Via CGI/CPL or SIP)

• • • • Third Party Call control mechanisms – SIP ( already well known) – CGL – CPL Used to instruct network entites to create and terminate calls to other network entities CGL and CPL allow independence from the SIP server logic.

Concept similar to IN but there is no SCP control All rights reserved for DESS-IRS 50

Continued…

• • CGI – For trusted users – triggered when the first request arrives CPL – Untrusted users – Allows users to load CPL scripts on networks – Reads and verifies scripts – Controlled party executes instruction – Messages sent back to CPL Controller All rights reserved for DESS-IRS 51

Quality of Service

End to End All rights reserved for DESS-IRS 52

QoS to the Content & Services Operator

• The ability of the network to predictably deliver content & services to subscribers, consistent with their expectation, and therefore resulting in a overall satisfactory user experience is related to… – Perceived Voice or Video Quality • Quantified by Jitter (aka delay variation) • Quantified by Throughput – Perceived response time • Quantified by RTT and Uni-directional End to End delay (aka Latency) • Quantified by Throughput – Perceived Availability/Reliability • Quantified by Network Utilization • 53

End to End QoS Testing

• Traditional performance testing focused on per flow measurements at the lowest layer (data link layer) – ATM ( Cell rate, Cell Delay, etc…) – Frame Relay (Frame Rate, Frame Delay, etc…) • Traditional testing is still necessary but no longer enough • QoS testing must now be

End to End

– Higher Layer (Network and Transport) – IP (Packet Rate, Packet Delay) – TCP (Segments) • This approaches a quantitative measure that is much closer to the subscribers true experience All rights reserved for DESS-IRS 54

Active (Intrusive) QoS Testing

Involves generation and monitoring of test traffic to simulate real world scenarios

Internet

Abis

BTS BSC

GSM RAN

Gb Gn

SGSN GGSN

CN PS-Domain

Gi HEADER Timestamp Sequence Number Test Frame or CELL CRC

All rights reserved for DESS-IRS • • Applicability   Lab Evaluations Provisioning of New Services  Troubleshooting

Measured Metrics

  

Packet Loss Delay & Jitter Throughput

Passive (Non-Intrusive) QoS Testing

Internet

Involves passive monitoring of customer traffic

Abis

BTS BSC

GSM RAN

Gb Gn

SGSN GGSN

CN PS-Domain

Gi

All rights reserved for DESS-IRS • Applicability   Content Delivery Service Assurance   Network Optimization Billing Mediation •

Measured Metrics

  

Packet Loss RTT & Delay Throughput

56

Should the Antenna be Adjusted ?

Radio Systems

Maintaining QoS

Are Data & Voice channels properly allocated?

Is there a Capacity Problem?

Should the cell be split?

Public Voice Network

MSC VLR HLR

Why can’t I get Access?

xRAN Internet

GGSN SGSN

Are there Database Problems ?

Why are my calls disconnecting?

Why is my email frozen Are the GPRS Support Nodes Dropping Packets?

All rights reserved for DESS-IRS

Is the ISP causing the Delay

57

QoS Example: Effects of mobility

Throughput decreases during cell changes All rights reserved for DESS-IRS 58

UMTS QoS Architecture All rights reserved for DESS-IRS 59

4 Classes of QoS in UMTS •

Traffic class

Conversational class

Streaming class

Interactive class

Background class

Fundamental characteristics Real Time

•- Preserve time relation (variation) between information entities of the stream •- Conversational pattern (stringent and low delay )

Real Time

• Preserve time relation (variation) between information entities of the stream

Best Effort

•- Request response • pattern -Preserve payload content

Best Effort

•-Destination is not expecting the data within a certain time •-Preserve payload content •

Example of the application

• voice •streaming • web video browsing All rights reserved for DESS-IRS • telemetry, emails 60

Le Multicast dans UMTS tout IP

All rights reserved for DESS-IRS 61

Plan

1. Le multicast dans les réseaux IP 2. Le multicast dans les réseaux UMTS 3. Le multicast dans le GGSN 4. Le multicast dans le RNC 5. Le multicast dans le Node-B All rights reserved for DESS-IRS 62

Multicast : Pourquoi faire ?

1. Vidéo conférence, Diffusion Vidéo.

2. Avantages du Multicast : Economie de bande passante, bande passante limité dans le UMTS Economie des ressources dans les serveurs All rights reserved for DESS-IRS 63

Unicast dans les réseau IP

All rights reserved for DESS-IRS 64

All rights reserved for DESS-IRS 65

Multicast dans les réseau IP

All rights reserved for DESS-IRS 66

All rights reserved for DESS-IRS 67

Multicast dans UMTS

Quel Architecture Choisir ?

Architecture du Multicast dans le GGSN Architecture du Multicast dans le RNC Architecture du Multicast dans le Node B All rights reserved for DESS-IRS 68

Règle pour recevoir ou envoyer une trame multicast : • • • Chaque terminal client multicast doit avoir un lien établit avec le GPRS Chaque terminal client multicast doit créer un lien (PDP) avec le GGSN pour le protocole IGMP Le terminal UMTS est maintenant dans l’environnement IGMP et peut joindre ou quitter le groupe multicast en utilisant la signalisation IGMP.

All rights reserved for DESS-IRS 69

Architecture du Multicast dans le GGSN 1 Circuit PDP/Terminal pour le UMTS 1 Circuit PDP/Terminal pour le protocole ICMP Internet

Source Multicast Unicast Unicast Unicast Unicast Multicast Terminal Terminal Node-B RNC GGSN Terminal Terminal Node-B RNC Unicast SGSN HLR/AuC/EIR/CGF

All rights reserved for DESS-IRS 70

Les inconvénients de cette architecture 1.

Lorsqu’un membre décide de quitter le multicast groupe, la source multicast UMTS ne reçoit pas cette information.

2. Lorsque tous les membres ont quitté le multicast groupe, la source multicast continue à transmettre les données à GGSN.

3.

L’architecture multicast a aussi besoin de ressource pour ses propres protocoles ( PIM-SM) et le GGSN doit pouvoir gérer le protocole IGMP.

4.

Surcharge important sur le GGSN qui peut entraîner de la congestion 5.

Le GGSN doit créer un circuit PDP pour la signalisation du protocole IGMP et un circuit PDP pour le transport des données.  Le multicast des données vue dans cette architecture demande deux fois plus de ressources PDP que l’unicast All rights reserved for DESS-IRS 71

1 Circuit PDP/Terminal pour le UMTS 1 Circuit PDP/Terminal pour le protocole ICMP Internet

Unicast Unicast Terminal Terminal Node-B Unicast Unicast RNC Terminal Multicast RNC Multicast Terminal Node-B SGSN Multicast GGSN Multicast HLR/AuC/EIR/CGF Source Multicast

All rights reserved for DESS-IRS 72

Avantages et Inconvénients

1.

Avantages :

La charges du GGSN est réduite par rapport à la solution précédente.

2.

Cette architecture permet au terminal de spécifier ses exigence de QoS au RNC 3.

1.

Permet de contrôler les admissions et les congestions pour chaque flux de données.

Inconvénients :

L’information de résiliation d’un client multicast ne remonte toujours pas à la source qui continue d’émettre les données multicast. Deplus, lorsqu’un terminal s’engage pour être un client multicast, cette information n’est pas remonté au GGSN, il y aura donc des problèmes de facturation des services multicast. Il faut développer un protocole de signalisation entre le RNC et SGSN pour résoudre ce problème.

2.

Lorsque la source multicast provient d’un autre domaine que celui du SGSN ou GGSN, le packet sera rejeté par le multicast routeur du RNC. Pour résoudre ce problème, il faudrait que le GGSN puisse agir comme la source du multicast ce qui signifie que le roaming ne peut fonctionner pour le multicast.

3.

Il n’existe pas de mécanisme permettant de créer un canal de donné entre le RNC

All rights reserved for DESS-IRS 73

1 Circuit PDP/Terminal pour le UMTS 1 Circuit PDP/Terminal pour le protocole ICMP

Terminal Unicast Multicast Multicast RNC Terminal Node-B Terminal Terminal Unicast Multicast RNC Multicast Node-B SGSN Multicast GGSN

Internet

Multicast HLR/AuC/EIR/CGF Source Multicast

All rights reserved for DESS-IRS 74

• • • •

Avantages et Inconvénients

Avantages :

La mobilité sera bien visible de l’arbre multicast dont la racine se trouve dans le Node-B Sachant que le handover dans UMTS se fera au niveau soft, et que lors du handover les deux node-B seront en liaison avec le terminal alors le handover multicast se fera avant le handover réel.

Inconvénients :

Il n’existe pas de mécanisme de broadcast de donnée entre le Node-B et le terminal UMTS.

Il n’existe pas de mécanisme d’implémentation de l’arbre de distribution dans le Core de UMTS.

L’information de résiliation d’un client multicast ne remonte toujours pas à la source qui continue d’émettre les données multicast. Deplus, lorsqu’un terminal s’engage pour etre un client multicast, cette information n’est pas remonté au GGSN, il y aura

All rights reserved for DESS-IRS

protocole de signalisation entre le Node-B et SGSN pour résoudre ce problème.

75

Point à améliorer : • • •

Pour chacun de ces architectures, il faut qu’un protocole spécifique puisse gérer la distribution des clefs et de l’encryptage des données par la source multicast afin que seul les membres du service multicast puisse recevoir ce service et pas les autres.

On peut décentraliser la fonction de facturation du GGSN au SGSN, mais pour cela il faut concevoir un canal de signalisation entre SGSN et la fonction routeur multicast où qu’elle se trouve dans le réseau.

Il faut que UMTS soit capable de reconnaître diffèrent type de service multicast pour qu’une facturation par service puisse être établie.

All rights reserved for DESS-IRS 76

• • • Conclusions

La première solution d’architecture Multicast Routing dans GGSN : - Requiert peu de modification du réseau existant - le Multicast demande plus de ressources que l’ Unicast La seconde solution d’architecture Multicast Routing dans RNC : - Demande une modification modéré du réseau existant.

- Réduit la création des circuits PDP dans le GGSN - Réduit donc la charge dans le Cœur du réseau : La troisième solution d’architecture Multicast Routing dans Node-B - Demande une modification substantiel du réseau existant - On ne pourra pas réutiliser les mécanismes de l’UMTS existant - La mobilité est visible pour l’arbre de diffusion multicast.

- Cette architecture est la bonne solution si on utilise une solution * avec des protocoles propriétaire dans le UTRAN

77