The Hausman-Taylor Estimator, GMM Estimation
Download
Report
Transcript The Hausman-Taylor Estimator, GMM Estimation
Part 8: IV and GMM Estimation [ 1/48]
Econometric Analysis of Panel Data
William Greene
Department of Economics
Stern School of Business
Part 8: IV and GMM Estimation [ 2/48]
Dear Professor Greene,
I have to apply multiplicative heteroscedastic models,
that I studied in your book, to the analysis of trade
data.
Since I have not found any Matlab implementations, I
am starting to write the method from scratch. I was
wondering if you are aware of reliable
implementations in Matlab or any other language,
which I can use as a reference.
Part 8: IV and GMM Estimation [ 3/48]
a “multi-level” modelling feature along the following lines? My data has a “two
level” hierarchical structure: I'd like to perform an ordered probit analysis such that
we allow for random effects pertaining to individuals and the organisations they
work for.
density ordered probit = f ( y oit | x oit , oit , oi , o )
(Integrate oit out directly - leads to norm al probability)
P rob(y oit j | x oit , oi , o ) G j ( y oit | x oit , oi , o )
G ( y oi t , x oit w oi h0 )
L ogL
O
o 1
N
i 1
log
T
t 1
G ( y oit , x oit w oi h 0 )
Part 8: IV and GMM Estimation [ 4/48]
L ogL
O
o 1
log
N
i 1
T
t 1
G ( y oit , x oit w oi h 0 )
N eed to integrate out w oi and h o .
L ogL
O
o 1
O
o 1
N
i 1
log
oi
N
i 1
log
L ogL ( , , )
o
oi
G ( y oit , x oit w oi h 0 ) ( w oi ) dw oi
t 1
T
G ( y oit , x oit w oi h 0 ) ( w oi ) dw oi ( h o ) dh o
t 1
T
Part 8: IV and GMM Estimation [ 5/48]
L ogL ( , , )
O
o 1
N
i 1
log
o
oi
G ( y oit , x oit w oi h 0 ) ( w oi ) dw oi ( ho ) dho
t 1
T
H ow to do the integration? M onte C arlo sim ulation
L ogL ( , , )
O
O
o 1
o 1
N
i 1
N
i 1
log
log
o
1
R
1
M
R
r 1
M
m 1
1
M
G ( y oit , x oit w oim h 0 ) ( h o ) dh o
t 1
T
M
m 1
G ( y oit , x oit w oim h 0 r )
t 1
T
Part 8: IV and GMM Estimation [ 6/48]
L ogL ( , , )
O
O
o 1
o 1
N
i 1
N
i 1
log
1
R
log
1 1
R M
1
M
R
r 1
R
r 1
M
m 1
M
m 1
G ( y oit , x oit w oim h 0 r )
t 1
T
T
G ( y oit , x oit w oim h 0 r )
t
1
(C om bine tw o sim ulations in one loop ove r tw o variables s im ulated at the sam e
tim e. h o , rm stays still w hile w oi , rm varies.)
O
o 1
N
i 1
log
1
RM
RM
rm 1
T
t 1 G
(h 1 , w1 ), (h 1 , w 2 ), (h 1 , w 3 ), etc .
y oit , x oit
w oi , rm
h0 , rm
Part 8: IV and GMM Estimation [ 7/48]
----------------------------------------------------------------------------Random Coefficients OrdProbs Model
Dependent variable
HSAT
Log likelihood function
-1856.64320
Estimation based on N =
947, K = 14
Inf.Cr.AIC =
3741.3 AIC/N =
3.951
Unbalanced panel has
250 individuals
Ordered probit (normal) model
LHS variable = values 0,1,...,10
Simulation based on
200 Halton draws
--------+-------------------------------------------------------------------|
Standard
Prob.
95% Confidence
HSAT| Coefficient
Error
z
|z|>Z*
Interval
--------+-------------------------------------------------------------------|Nonrandom parameters
Constant|
3.94945***
.24610
16.05 .0000
3.46711
4.43179
AGE|
-.04201***
.00330
-12.72 .0000
-.04848
-.03553
EDUC|
.05835***
.01346
4.33 .0000
.03196
.08473
|Scale parameters for dists. of random parameters
Constant|
1.06631***
.03868
27.57 .0000
.99050
1.14213
|Standard Deviations of Random Effects
R.E.(01)|
.05759*
.03372
1.71 .0877
-.00851
.12369
|Threshold parameters for probabilities
Mu(01)|
.13522**
.05335
2.53 .0113
.03065
.23979
...
Mu(09)|
4.66195***
.11893
39.20 .0000
4.42884
4.89506
--------+--------------------------------------------------------------------
Part 8: IV and GMM Estimation [ 8/48]
Agenda
Single equation instrumental variable estimation
Exogeneity
Instrumental Variable (IV) Estimation
Two Stage Least Squares (2SLS)
Generalized Method of Moments (GMM)
Panel data
Fixed effects
Hausman and Taylor’s formulation
Application
Arellano/Bond/Bover framework
Part 8: IV and GMM Estimation [ 9/48]
Structure and Regression
E a rn in g s (s tru c tu ra l) e q u a tio n
y it x it β E it it , i,t" = siblin g t in fa m ily i
E it ' tru e ' e du ca tio n m e a su ra ble o n ly w ith e rro r
S it m e a su re d 'sch o o lin g' = E it w it , w = m e a su re m e n t e rro r
R e d u c e d fo rm
y it x it β (S it w it ) it
= x it β S it + ( it w it )
E s tim a tio n p ro b le m fo r le a st squ a re s (O LS o r G LS )
2
C o v[S it , ( it w it )] w 0
C o n siste n cy re lie s o n th is co va ria n c e e qu a lin g 0 .
H o w to e stim a te β a n d (co n siste n tly)?
Part 8: IV and GMM Estimation [ 10/48]
Exogeneity
S tru ctu re
y = Xβ + ε
E [ ε | X ] = g (X ) 0
R e g re ssio n y = X β + g (X ) + [ ε - g (X ) ]
= E [y | X ] + u , E [ u | X ]= 0
P ro je ctio n ε
= Xθ + w
"R e g re ssio n o f y o n X "
y
= X (β + θ ) + w
T h e p ro b le m :
X is n o t e x o g e n o u s .
E x o g e n e ity:
E [ it | x it ] 0 (cu rre n t p e rio d )
S trict E x o g e n e ity: E [ it | x i1 , x i2 , ..., x iT ] 0 (a ll p e rio d s)
(W e a ssu m e n o co rre la tio n a cro ss in d ivid u a ls.)
Part 8: IV and GMM Estimation [ 11/48]
An Experimental Treatment Effect
H ealth O utcom e =
f(unobserved individu al characteristics, a
observed individual characteristics,
x
treatment (interventions),
T
random ness,
)
C ardiovascular D isease (C V D ) = + x + T (H orm one R eplacem ent T herapy) + a +
P roblem : H R T is associated w ith greater risk of cardiovascular disease.
E xperim ental evidence suggests > 0. O b servational evidence suggests < 0.
W hy? T = T (a). A lready healthy w om en w ith higher education and higher incom e initiated
the treatm ent to prevent heart disease. H R T users had low er C V D in spite of the bad effects
of the treatm ent T . T is endogenous in this m odel. (A pparently.)
Part 8: IV and GMM Estimation [ 12/48]
Instrumental Variables
Instrumental variable associated with changes in x, not with ε
dy/dx = β dx/dx + dε /dx = β + dε /dx. Second term is not 0.
dy/dz = β dx/dz + dε /dz. The second term is 0.
β =cov(y,z)/cov(x,z) This is the “IV estimator”
Example: Corporate earnings in year t
Earnings(t) = β R&D(t) + ε(t)
R&D(t) responds directly to Earnings(t) thus ε(t)
A likely valid instrumental variable would be R&D(t-1)
which probably does not respond to current year
shocks to earnings.
Part 8: IV and GMM Estimation [ 13/48]
Least Squares
y = Xβ + ε
E[ y | X ] X β E[ ε | X ] X β
b ( X X )
1
X y ( X X )
1
X ( X β ε )
1
= β ( X X / N) ( X ε / N)
p lim b = β p lim ( X X / N)
= β + Qγ
β
1
p lim ( X ε / N)
Part 8: IV and GMM Estimation [ 14/48]
The IV Estimator
T h e v a ria b le s
X [ x 1 , x 2 , ...x K -1 , x K ],
Z [ x 1 , x 2 , ...x K -1 , z ]
T h e M o d e l A ssu m p tio n
E [ it | z it ] 0
E [ z it it | z it ] E[ z it ( y it x it β ) | z it ] 0
n
(U sin g "n " to d e n ote i= 1 T i )
E [(1 /n ) i,t z it it | z it ] E[( 1 /n ) i,t z it ( y it x it β ) | z it ] 0
E [(1 /n ) Z 'y ] = E [(1 /n ) Z 'X β ]
T h e E stim a to r : M im ic th is con d ition (if p ossib le )
ˆ so (1 /n ) Z 'y = (1 /n ) Z 'X β
ˆ
F in d β
Part 8: IV and GMM Estimation [ 15/48]
A Moment Based Estimator
T h e E stim a to r
ˆ so (1 /n ) Z 'y = (1 /n ) Z 'X β
ˆ
F in d β
In stru m e n ta l V a ria b le E stim a to r
ˆ = ( Z 'X ) -1 Z 'y
β
(N ot eq u ivalen t to rep lacin g x K w ith z.)
Part 8: IV and GMM Estimation [ 16/48]
Cornwell and Rupert Data
Cornwell and Rupert Returns to Schooling Data, 595 Individuals, 7 Years
Variables in the file are
EXP
WKS
OCC
IND
SOUTH
SMSA
MS
FEM
UNION
ED
LWAGE
=
=
=
=
=
=
=
=
=
=
=
work experience, EXPSQ = EXP2
weeks worked
occupation, 1 if blue collar,
1 if manufacturing industry
1 if resides in south
1 if resides in a city (SMSA)
1 if married
1 if female
1 if wage set by unioin contract
years of education
log of wage = dependent variable in regressions
These data were analyzed in Cornwell, C. and Rupert, P., "Efficient Estimation with Panel
Data: An Empirical Comparison of Instrumental Variable Estimators," Journal of Applied
Econometrics, 3, 1988, pp. 149-155. See Baltagi, page 122 for further analysis. The data
were downloaded from the website for Baltagi's text.
Part 8: IV and GMM Estimation [ 17/48]
Wage Equation with
Endogenous Weeks
logWage=β1+ β2 Exp + β3 ExpSq + β4OCC + β5 South + β6 SMSA + β7 WKS + ε
Weeks worked is believed to be endogenous in this equation.
We use the Marital Status dummy variable MS as an exogenous variable.
Wooldridge Condition (5.3) Cov[MS, ε] = 0 is assumed.
Auxiliary regression: For MS to be a ‘valid’ instrumental variable,
In the regression of WKS on
[1,EXP,EXPSQ,OCC,South,SMSA,MS, ]
MS significantly “explains” WKS.
A projection interpretation: In the projection
XitK =θ1 x1it + θ2 x2it + … + θK-1 xK-1,it + θK zit , θK ≠ 0.
(One normally doesn’t “check” the variables in this fashion.
Part 8: IV and GMM Estimation [ 18/48]
Auxiliary Projection
+----------------------------------------------------+
| Ordinary
least squares regression
|
| LHS=WKS
Mean
=
46.81152
|
+----------------------------------------------------+
+---------+--------------+----------------+--------+---------+----------+
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X|
+---------+--------------+----------------+--------+---------+----------+
Constant
45.4842872
.36908158
123.236
.0000
EXP
.05354484
.03139904
1.705
.0881
19.8537815
EXPSQ
-.00169664
.00069138
-2.454
.0141
514.405042
OCC
.01294854
.16266435
.080
.9366
.51116447
SOUTH
.38537223
.17645815
2.184
.0290
.29027611
SMSA
.36777247
.17284574
2.128
.0334
.65378151
MS
.95530115
.20846241
4.583
.0000
.81440576
Part 8: IV and GMM Estimation [ 19/48]
Application: IV for WKS in Rupert
+----------------------------------------------------+
| Ordinary
least squares regression
|
| Residuals
Sum of squares
=
678.5643
|
| Fit
R-squared
=
.2349075
|
|
Adjusted R-squared
=
.2338035
|
+----------------------------------------------------+
+---------+--------------+----------------+--------+---------+
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] |
+---------+--------------+----------------+--------+---------+
Constant
6.07199231
.06252087
97.119
.0000
EXP
.04177020
.00247262
16.893
.0000
EXPSQ
-.00073626
.546183D-04
-13.480
.0000
OCC
-.27443035
.01285266
-21.352
.0000
SOUTH
-.14260124
.01394215
-10.228
.0000
SMSA
.13383636
.01358872
9.849
.0000
WKS
.00529710
.00122315
4.331
.0000
Part 8: IV and GMM Estimation [ 20/48]
Application: IV for wks in Rupert
+----------------------------------------------------+
| LHS=LWAGE
Mean
=
6.676346
|
|
Standard deviation
=
.4615122
|
| Residuals
Sum of squares
=
13853.55
|
|
Standard error of e =
1.825317
|
| Fit
R-squared
= -14.64641
|
|
Adjusted R-squared
= -14.66899
|
| Not using OLS or no constant. Rsqd & F may be < 0. |
+----------------------------------------------------+
+---------+--------------+----------------+--------+---------+
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] |
+---------+--------------+----------------+--------+---------+
Constant
-9.97734299
3.59921463
-2.772
.0056
EXP
.01833440
.01233989
1.486
.1373
EXPSQ
-.799491D-04
.00028711
-.278
.7807
OCC
-.28885529
.05816301
-4.966
.0000
SOUTH
-.26279891
.06848831
-3.837
.0001
SMSA
.03616514
.06516665
.555
.5789
WKS
.35314170
.07796292
4.530
.0000
OLS-----------------------------------------------------WKS
.00529710
.00122315
4.331
.0000
Part 8: IV and GMM Estimation [ 21/48]
Generalizing the IV Estimator-1
D efin e a p a rtition ed reg ression for n ob serv a tion s
y = X 1β 1 + X 2 β 2 + ε
K1
K 2 v a ria b les
su ch th a t p lim ( X 1 ε /N ) = 0 a n d p lim ( X 2 ε /N ) 0 .
T h ere ex ists a set of M K 2 v a ria b les W su ch th a t
p lim (1 /n ) W 'X 1 Q W 1 0
p lim (1 /n ) W 'X 2 Q W 2 0
p lim (1 /n ) W 'ε
Q W ε = 0 , W is ex og en ou s
p lim (1 /n ) X 1 ε
Q 1ε
0 , X 1 is ex og en ou s
p lim (1 /n ) X 2 ε
Q 2ε
0 , X 2 is n ot ex og en ou s
Part 8: IV and GMM Estimation [ 22/48]
Generalizing the IV Estimator - 2
D e fin e th e se t o f in stru m e n ta l va ria ble s Z
Z1 X1
Z 2 K 2 lin e a r co m bin a tio n o f th e M W s
= WP
P = a n M xK 2 m a trix. W P is N xK 2
Z = [ Z 1 , Z 2 ]= [ X 1 , Z 2 ]= [ X 1 , W P ]
W h y m u st M be K 2 ? S o Z 2 ca n h a ve fu ll co lu m n ra n k.
Part 8: IV and GMM Estimation [ 23/48]
Generalizing the IV Estimator
B y th e d e fin itio n s, Z is a se t o f in stru m e n ta l v a ria b le s.
ˆ = [ Z 'X ] -1 Z 'y
β
is co n siste n t a n d a sy m p to tica lly n o rm a lly d istrib u te d .
2
ˆ
ˆ )'( y X β
ˆ)
(y Xβ
N o r (N -K )
A ssu m in g h o m o sce d a sticity a n d n o a u to co r e la tio n ,
2
-1
-1
ˆ]
E st.A sy.V a r[ β
ˆ [ Z 'X ] Z 'Z [ X 'Z ]
Part 8: IV and GMM Estimation [ 24/48]
The Best Set of Instruments
Z1 X1
Z 2 K 2 lin e a r co m b in a tio n o f th e M W s
= WP
P = a n M x K 2 m a trix . W P is N x K 2
Z = [ Z 1 , Z 2 ]= [ X 1 , Z 2 ]= [ X 1 , W P ]
W h a t is th e b e st P to u se (th e b e st w a y to
co m b in e th e e x o g e n o u s in stru m e n ts)?
(a ) If M = K 2 , it m a k e s n o d iffe re n ce .
(b ) If M < K 2 , th e re a re to o fe w in stru m e n ts to co n tin u e
(c) If M > K 2 , th e re is o n e b e st co m b in a tio n , 2 S L S .
Part 8: IV and GMM Estimation [ 25/48]
Two Stage Least Squares
A C la ss o f IV e stim a to rs by Z = [ Z 1 , Z 2 ] = [ X 1 , W ] P
2 S LS is de fin e d by
(1 ) R e gre ss ( X 1 a n d X 2 ) o n a ll o f ( X 1 a n d W ), c o lu m n by co lu m n ,
ˆ and X
ˆ ) = X
ˆ . X is re pro du ce d
a n d co m pu te pre dicte d va lu e s, ( X
1
2
1
I
ˆ
pe rfe ctly by re gre ssin g it o n itse lf so X 1 = [ X 1 , W ] P1 =[ X 1 , W ]
0
ˆ [ X , W ] P . Fo r 2 S LS , X
ˆ = Z (Z 'Z ) -1 Z 'X
X
2
1
2
ˆ to e stim a te β .
(2 ) R e gre ss y o n X
(D o e s it w o rk a s a n IV e stim a to r?
ˆ is a lin e a r co m bin a tio n o f X a n d W , so ye s.)
X
2
1
Part 8: IV and GMM Estimation [ 26/48]
2SLS Estimator
B y th e d e fin itio n s, Z is a se t o f in stru m e n ta l v a ria b le s.
ˆ = [X
ˆ 'X ] -1 X
ˆ 'y
β
is co n siste n t a n d a sy m p to tica lly n o rm a lly d istrib u te d .
2
ˆ
ˆ )'( y X β
ˆ)
(y Xβ
N o r (N -K )
A ssu m in g h o m o sce d a sticity a n d n o a u to co r e la t io n ,
2 ˆ
-1 ˆ ˆ
ˆ]
ˆ ] -1
E st.A sy.V a r[ β
'X ] X
'X [ X 'X
ˆ [X
Part 8: IV and GMM Estimation [ 27/48]
2SLS Algebra
ˆ 'X = Z (Z 'Z ) -1 Z 'X 'X
X
-1
= X ' Z (Z 'Z ) Z ' X
= X'
-1
Z (Z 'Z ) Z '
-1
Z (Z 'Z ) Z '
X
ˆ 'X
ˆ
= X
T h e re fo re
ˆ 'X ] -1 X
ˆ 'X
ˆ [ X 'X
ˆ ] -1 [ X
ˆ 'X
ˆ ]1
[X
ˆ]
ˆ 'X
ˆ] ,
E st.A sy.V a r[β
ˆ [X
ˆ
2
-1
2
ˆ )'( y X β
ˆ)
(y Xβ
n o r (n -K )
Part 8: IV and GMM Estimation [ 28/48]
A General Result for IV
We defined a class of IV estimators by the set of
variables
Z1 X1
Z 2 K 2 lin e a r co m b in a tio n o f th e M W s
= WP
P = a n M x K 2 m a trix . W P is N x K 2
Z = [ Z 1 , Z 2 ]= [ X 1 , Z 2 ]= [ X 1 , W P ]
The minimum variance (most efficient) member in this
class is 2SLS (Brundy and Jorgenson(1971))
(rediscovered JW, 2000, p. 96-97)
Part 8: IV and GMM Estimation [ 29/48]
GMM Estimation –
Orthogonality Conditions
G e n e ra l M o d e l F o rm u la tio n :
y = X β + ε ; p lim [(1 /n ) X 'ε ] 0 (p o ssib ly ) K re g re sso rs in X
M K In stru m e n ta l v a ria b le s Z ; p lim [(1 /n ) Z 'ε ] = 0 .
IV fo rm u la tio n im p lie s M o rth o g o n a lity c o n d itio n s
E [z m ( y x 'β )] 0 .
2S L S o n ly K o f th e se in th e fo rm
ˆ m ( y x 'β )] 0 w h e re
E [x
M
ˆ
x m = l= 1 lm z m
ˆ = (X
ˆ 'X
ˆ ) -1 X
ˆ 'y
S o lu tio n is β
C o n sid e r a n e stim a to r th a t u se s a ll M e q u a tio n s w h e n M > K
T h e o rth o g o n a lity co n d itio n to m im ic is
n
E [ (1 /n ) i= 1 z im ( y i x iβ )]= 0 , m = 1 ,...,M
T h is is M e q u a tio n s in K u n k n o w n s e a ch o f th e fo rm E [ g m ( β )]= 0 .
Part 8: IV and GMM Estimation [ 30/48]
GMM Estimation - 1
n
E [(1 /n ) i= 1 z im ( y i x iβ )]= 0 , m = 1 ,...,M
E [g m ( β )]= 0 , m = 1 ,...,M .
S a m p le cou n te rp a rts - fin d in g th e e stim a tor:
N
ˆ )= 0
(1 /n ) i= 1 z im ( y i x iβ
(a ) If M = K , th e e x a ct solu tion is 2 S LS
(b ) If M < K , th e re a re too f e w e q u a tion s. N o solu tion .
(c) If M > K , th e re a re e x ce ss e q u a tion s . H ow to re con cile th e m ?
F irst P a ss: "Le a st S q u a re s"
ˆ :
T ry M in im izin g w rt β
M
m=1
ˆ)
(1 /n ) i= 1 z im ( y i x iβ
n
2
g ( β ) 'g ( β )
Part 8: IV and GMM Estimation [ 31/48]
GMM Estimation - 2
ˆ = th e m in im ize r of
β
g ( β ) 'g ( β ) = g ( β ) ' I
-1
M
m=1
ˆ)
(1 /n ) i= 1 z im ( y i x iβ
n
2
g ( β ) 'g ( β )
g(β )
D e fin e s a "M in im u m D ista n ce E stim a tor" w ith w e ig h t m a trix = I.
M ore g e n e ra lly : L e t
ˆ = th e m in im ize r of g ( β ) ' A g ( β )
β
R e su lts: F or a n y p ositiv e d e fin ite m a tr ix A ,
ˆ is con siste n t a n d a sy m p totica lly n orm a lly d istrib u te d .
β
)
β
(
g
)
β
(
g
ˆ ]=
A
)]
β
(
g
r[
a
sy.V
A
A
A sy .V a r[ β
'
β
'
β
(S e e JW , C h . 1 4 for a n a ly sis of a sy m p totic p rop e rtie s.)
Part 8: IV and GMM Estimation [ 32/48]
IV Estimation
ˆ = th e m in im izer of g ( β ) ' A g ( β )
β
R esu lts: F or an y p ositive d efin ite m atr ix A ,
ˆ is con sisten t.
β
g
(
β
)
g
(
β
)
ˆ ]=
A sy.V ar[ β
A
A
sy.V
ar[
g
(
β
)]
A
β
'
β
'
-1
F or IV estim ation , g ( β ) = (1 /n ) Z '( y - X β )
g(β )
(1 / n) Z 'X
β '
2
n
2
A sy.V ar[ g ( β )] (1 / n) i 1 z i z i
a ssu m in g h o m o sce d a sticity a n d n o a u to co r re la tio n .
Part 8: IV and GMM Estimation [ 33/48]
An Optimal Weighting Matrix
ˆ = th e m in im ize r o f g ( β ) ' A g ( β )
β
Fo r a n y p o sitiv e d e fin ite m a trix A ,
ˆ is c o n siste n t a n d a sy m p to tic a lly n o rm a lly d istrib u te d .
β
g
(
β
)
g
(
β
)
ˆ ]=
A sy .V a r[ β
A
A
sy.V
a
r[
g
(
β
)]
A
β
'
β
'
1
Is th e re a 'b e st' A m a trix ? T h e m o st e ffic ie n t e stim a to r in th e G M M c la ss
has A =
A sy.V a r[ g ( β )]
1
. A A sy.V a r[ g ( β )] A = A sy.V a r[ g ( β )]
1
ˆ
β
=
th
e
m
in
im
ize
r
o
f
g
(
β
)
'
A
sy.V
a
r[
g
(
β
)]
g( β )
GMM
1
Part 8: IV and GMM Estimation [ 34/48]
The GMM Estimator
1
ˆ
β
=
th
e
m
in
im
ize
r
of
q
=
g
(
β
)
'
A
sy.V
a
r[
g
(
β
)]
g( β )
GMM
1 g(β )
g(β )
ˆ
A sy.V a r[ β G M M ]=
A sy.V a r[ g ( β )]
β
'
β
'
F or IV e stim a tion , g ( β ) = (1 /n ) Z '( y - X β ),
2
N
2
2
1
g(β )
(1 / N) Z 'X
β '
2
A sy.V a r[ g ( β )] (1 / n) i 1 z i z i =( / n ) Z 'Z
2
2
-1
ˆ
A sy.V a r[ β
]= ( (1 / n) X 'Z )[( / n ) Z 'Z ] ( (1 / n) Z 'X )
GMM
1
2
-1
= X 'Z [ Z 'Z ] Z 'X )
1
!!!! !
IM P L IC A T IO N : 2 S L S is n o t ju st e fficie n t fo r IV e stim a to rs th a t u se a lin e a r
c o m b in a tio n o f th e co lu m n s o f Z . It is e ffici e n t a m o n g a ll e stim a to rs th a t u se
th e co lu m n s o f Z .
Part 8: IV and GMM Estimation [ 35/48]
GMM Estimation
g ( β )=
1
N
N
i 1 z i ( y i x iβ )
1
N
N
i1 z i ε i
A ssu m in g h o m o sce d a sticity a n d n o a u to co r re la tio n 2 S L S
is th e e fficie n t G M M e stim a to r. W h a t if th e re is h e te ro sce d a sticity ?
1 1 n 2
1 N 2
A sy.V a r[ g ( β )] 2 i 1 i z i z i , e stim a te d w ith i 1 e i z i z i
n
nn
b a se d o n 2 S L S re sid u a ls e i . T h e G M M e stim a to r m in im ize s
1 n
1
q i 1 z i ( y i x iβ ) '
n
n
1 n 2
i 1 e i z i z i
n
1
1 n
z
(
y
x
β
)
i1 i
i
i
.
n
-1
T h is is n o t 2 S L S b e ca u se th e w e ig h tin g m a trix is n o t ( Z 'Z ) .
Part 8: IV and GMM Estimation [ 36/48]
Application - GMM
NAMELIST
NAMELIST
2SLS
NLSQ
; x = one,exp,expsq,occ,south,smsa,wks$
; z = one,exp,expsq,occ,south,smsa,ms,union,ed$
; lhs = lwage ; RHS = X ; INST = Z $
; fcn = lwage-b1'x
; labels = b1,b2,b3,b4,b5,b6,b7
; start = b
; inst = Z
; pds = 0$
Part 8: IV and GMM Estimation [ 37/48]
Application - 2SLS
Part 8: IV and GMM Estimation [ 38/48]
GMM Estimates
Part 8: IV and GMM Estimation [ 39/48]
2SLS
GMM with Heteroscedasticity
Part 8: IV and GMM Estimation [ 40/48]
Testing the Overidentifying Restrictions
q = g ( β ) ' A sy.V a r[ g ( β )]
1
g( β )
U n de r th e h ypo th e sis th a t E [ g ( β )] = 0 ,
d
2
q [M K ]
M = n u m be r o f m o m e n t e qu a tio n s
K = n u m be r o f pa ra m e te rs e stim a te d
(In o u r e x a m ple , M = 9 , K = 7 .)
M - K = n u m be r o f 'e x tr a ' m o m e n t e qu a tio n s. M o re th a n a re
n e e de d to ide n tify th e pa ra m e te rs.
Fo r th e e x a m ple ,
| Value of the GMM criterion :
| e(b)tZ inv(ZtWZ) Zte(b) =
|
537.3916 |
Part 8: IV and GMM Estimation [ 41/48]
Inference About the Parameters
N
2
-1
ˆ
β
(X 'Z )[ i= 1ˆ i z i z i ] (Z 'X )
GMM
1
(X 'Z )[
N
i= 1
N
2
-1
ˆ
E st.A sy.V a r[ β
]=
(X
'Z
)
[
z
z
]
(Z 'X )
ˆ
GMM
i= 1 i
i i
2
-1
ˆ i z i z i ] (Z 'y )
1
R e strictio n s ca n be te ste d u sin g W a ld sta tistics;
H 0 : r ( β )= h
H 1 :N o t H 0
W a ld
R
ˆ
r (β
)- h
GMM
ˆ
r (β
)- h
GMM
ˆ
' R E st.A sy.V a r[ β
] R
GMM
1
r ( βˆ
GMM
)- h
ˆ
β
GMM
E .g., fo r a sim ple te st, H 0 : k = 0 , th is is th e squ a re o f th e t-ra tio .
Part 8: IV and GMM Estimation [ 42/48]
Specification Test Based on the Criterion
C o n sid e r a n u ll h yp o th e sis H 0 th a t im p o se s re strictio n s o n a n
a lte rn a tive h yp o th e sis H 1 ,
U n d e r th e n u ll h yp o th e sis th a t E [ g ( β 0 )] = 0 ,
q 0 = g ( β 0 ) ' A sy.V a r[ g ( β 0 )]
1
d
2
g ( β 0 ) [M K 0 ]
U n d e r th e a lte rn a tive h yp o th e sis, H 1
q 1 = g ( β 1 ) ' A sy.V a r[ g ( β 1 )]
d
1
d
2
g ( β 1 ) [M K 1 ]
2
U n d e r th e n u ll, q 0 q 1 [K 1 K 0 ]
R e strictio n s ca n b e te ste d u sin g th e cri te rio n fu n ctio n s
sta tistic, q 0 q 1 .
(W e ig h tin g m a trix m u st b e th e sa m e fo r H 0 a n d H 1 . U se
th e u n re stricte d w e ig h tin g m a trix .)
Part 8: IV and GMM Estimation [ 43/48]
Extending the Form of the GMM
Estimator to Nonlinear Models
V e ry little ch a n ge s if th e re gre ssio n fu n ctio n is n o n lin e a r.
1 1 N 2
1 N 2
A sy.V a r[ g ( β )] 2 i 1 i z i z i , e stim a te d w ith i 1 e i z i z i
N
N N
ba se d o n n o n lin e a r 2 S LS re sidu a ls e i . T h e G M M e stim a to r m in im ize s
1 N
1
q i 1 z i ( y i f ( x iβ )) '
N
N
1 N 2
i 1 e i z i z i
N
T h e pro ble m is e sse n tia lly th e sa m e .
1
1 N
z
(
y
f
(
x
β
))
i 1 i
i
i
.
N
Part 8: IV and GMM Estimation [ 44/48]
A Nonlinear Conditional Mean
f ( x iβ ) e x p( x β )
E[ z i ( y i e x p( x iβ ))] 0
N o n lin e a r in stru m e n ta l va ria ble s (2 S LS ) m in im ize s
N
i= 1
1
N
( y i e x p( x iβ )) z i '[ Z 'Z ]
i= 1 z i ( y i e x p( x iβ ))
N o n lin e a r G M M th e n m in im ize s
1 N
2
N
2
1
(
y
e
x
p(
x
β
))
z
'[(1 / N) i 1ˆ i z i z i ]
i= 1
i
i
i
N
1 N
ˆ 1
i= 1 ( y i e x p( x iβ )) z i ' W
N
1 N
z
(
y
e
x
p(
x
β
))
i= 1 i
i
i
N
1 N
z
(
y
e
x
p(
x
β
)
)
i= 1 i
i
i
N
Part 8: IV and GMM Estimation [ 45/48]
Nonlinear Regression/GMM
NAMELIST
; x = one,exp,expsq,occ,south,smsa,wks$
NAMELIST
; z = one,exp,expsq,occ,south,smsa,ms,union,ed$
? Get initial values to use for optimal weighting matrix
NLSQ
; lhs = lwage ; fcn=exp(b1'x) ; inst = z
; labels=b1,b2,b3,b4,b5,b6,b7 ; start=7_0$
? GMM using previous estimates to compute weighting matrix
NLSQ (GMM)
; fcn = lwage-exp(b1'x) ; inst = Z
; labels = b1,b2,b3,b4,b5,b6,b7 ; start = b
; pds = 0 $ (Means use White style estimator)
Part 8: IV and GMM Estimation [ 46/48]
Nonlinear Wage Equation Estimates
NLSQ Initial Values
Part 8: IV and GMM Estimation [ 47/48]
Nonlinear Wage Equation Estimates
2nd Step GMM
Part 8: IV and GMM Estimation [ 48/48]
IV for Panel Data
Fixed E ffects
b 2 sls ,lsdv
N
i 1
X i M D Z i
N
i 1
Z i M D Z i
1
N
i 1
Z i M D X i
1
1
N
N
N X M Z
Z
M
Z
Z
M
y
i 1
i
D
i
i 1
i
D i
i 1 i D i
R andom E ffects
N
ˆ 1Z
b 2 sls , R E i 1 X i
i
i
N X
ˆ 1Z
i 1 i i i
N
ˆ 1Z
i 1 Z i
i
i
N
i 1
ˆ Z
Z i
i
1
i
1
1
N
ˆ 1 X
i 1 Z i
i
i
N
i 1
ˆ 1y
Z i
i
i
1