Transcript Chapter 3
Chapter 3 the z-Transform 3.1 definition 3.2 properties of ROC 3.3 the inverse z-transform 3.4 z-transform properties 1 3.1 definition X ( z) x[ n] z n , z re j n Rx | z | Rx Figure 3.2 2 H ( z) h[n]z n : system function n X e j X z X z | | z|1,that is z e x[n] re n n j ( xnr j n )e jn FT xnr n n the condition for convergence: | x[n]r n | n 3 EXAMPLE: x1[n ] a u[n ], x2 [n ] a u[ n 1] n X ( z) n 1 1 az 1 , ROC is | z || a | and | z || a | seperately ROC takes the poles as its boundary 4 3.2 properties of ROC 5 1. finite duration : 0 [] | z | [ ] 2.right side : Rx | z | [] 3.left side : 0 [] | z | Rx 4.two side : Rx Rx , then , Rx | z | Rx Rx Rx , then no ROC 5.causal : Rx | z | , include 6.stable : include | z | 1 prove : if system is stable , then | h[n] | , n | H ( z ) || z |1|| h[ n] e jn | n | h[ n] | | e n jn | | h[n] | n 7.causal & stable : poles are all in unit circle 6 3.3 the inverse z-transform 1.inspection method 2.partial fraction expansion 3.power series expansion 7 EXAMPLE: X ( z ) 1 0.5 z 1 0.25 z 2 n0 1 0 .5 x[ n] 0.25 0 n 1 n2 other EXAMPLE: X ( z) 1 (1 2 z B1 1 2z 1 B1 (1 2 z x[ n] 4 3 1 )(1 0.5 z 1 ,0.5 | z | 2 ) B2 1 0.5 z 1 1 ) X ( z ) | z 2 4 / 3, B2 (1 0.5 z n ( 2) u[ n 1]) 1 1 ) X ( z ) | z 0.5 1 / 3 n 0.5 u[ n] 3 8 3.4 z-transform properties x[ n] X ( z ) ROC Rx z x1[ n] X 1 ( z ) ROC Rx1 z x2 [ n ] X 2 ( z ) ROC Rx 2 z z 1.ax1[n] bx2[n] aX1( z ) bX 2 ( z ),ROC Rx1 Rx2 z 2.x[n n0 ] z n n0 X ( z ),ROC Rx z 3.z0 x[n] X ( z / z0 ),ROC Rx | z0 | 9 4.nx[ n] z z dX ( z ) ROC Rx dz 5.x [ n] X ( z ) * * ROC Rx * Re x[ n] X ( z) X ( z ) Imx[n] X ( z) X ( z ) * * * ROC Rx 2j z x [ n] X (1 / z ) z ROC Rx 2 6.x[n] X (1 / z ) * * * * ROC 1 / Rx ROC 1 / Rx 10 7.x[n] is causal x[0] lim X ( z ) z lim x[ n] lim ( z 1) X ( z ) n z 1 right lim zX ( z ) X ( z ) lim ( Z [ x[ n 1] Z [ x[ n]]) z 1 z 1 lim [ ( x[n 1] x[n])z ] n z 1 n 1 n lim [ lim ( x[m 1] x[m])z m ] z 1 n m 1 lim ( x[0] x[1] x[1] x[0] x[ n 1] x[n]) n left z 8.x1[n] x2[n] X1( z ) X 2 ( z ),ROC Rx1 Rx2 11 N a M k b x[n k ] y[ n k ] k k 0 k 0 M H ( z) Y ( z) X ( z) bk z ak z k k 0 N k k 0 for FIR , ak 0, for k 0 bk h[ k ] EXAMPLE: H ( z) 2 z 1 1 0.5 z z 2 3 z 4 y[n] 2 x[n] x[n 1] x[n 3] 0.5 y[n 2] y[n 4] 12 Relation between H(z) and frequency responce: 10 0 -10 -20 0 0.2 0.4 0.6 0.8 Normalized Angular Frequency (´p rads/sample) 1 0.2 0.4 0.6 0.8 Normalized Angular Frequency (´p rads/sample) 1 600 Phase (degrees) B=[2,1,0,-1] A=[1,0,0.5,0,-1] freqz(B,A) Magnitude (dB) 20 400 200 0 -200 0 13 H(z) jω H(e ) h[n] convolution(FIR’s realization) difference equation(IIR’s realization) 14 summary: 3.1 the z-transform 3.2 properties of ROC right-sides sequence: inside the circle left-sides sequence: outside the circle finite-duration sequence: the entire z-plane two-sided sequence: a ring causal sequence: including infinite stable sequence: including the unit circle 3.3 the inverse z-transform: inspection method partial fraction expansion power series expansion 3.4 z-transform properties 15 Keys and difficulties: ROC; the convolution property; the relationship among system function, the impulse response, frequency response and difference equation; exercises: 3.37 3.38 (these can be solved without contour integral method) 16