Transcript Chapter 3
Chapter 3 the z-Transform
3.1 definition
3.2 properties of ROC
3.3 the inverse z-transform
3.4 z-transform properties
1
3.1 definition
X ( z)
x[ n] z
n
, z re
j
n
Rx | z | Rx
Figure 3.2
2
H ( z)
h[n]z
n
: system
function
n
X e
j
X z
X z |
| z|1,that is z e
x[n] re
n
n
j
( xnr
j
n
)e
jn
FT xnr
n
n
the condition for convergence:
| x[n]r
n
|
n
3
EXAMPLE:
x1[n ] a u[n ], x2 [n ] a u[ n 1]
n
X ( z)
n
1
1 az
1
,
ROC is | z || a | and
| z || a | seperately
ROC takes the
poles as its
boundary
4
3.2 properties of ROC
5
1. finite duration : 0 [] | z | [ ]
2.right side : Rx | z | []
3.left side : 0 [] | z | Rx
4.two side : Rx Rx , then , Rx | z | Rx
Rx Rx , then
no
ROC
5.causal : Rx | z | , include
6.stable : include | z | 1
prove : if
system is stable , then
| h[n] | ,
n
| H ( z ) || z |1||
h[ n] e
jn
|
n
| h[ n] | | e
n
jn
|
| h[n] |
n
7.causal & stable :
poles are all in unit circle
6
3.3 the inverse z-transform
1.inspection method
2.partial fraction expansion
3.power series expansion
7
EXAMPLE:
X ( z ) 1 0.5 z
1
0.25 z
2
n0
1
0 .5
x[ n]
0.25
0
n 1
n2
other
EXAMPLE:
X ( z)
1
(1 2 z
B1
1 2z
1
B1 (1 2 z
x[ n]
4
3
1
)(1 0.5 z
1
,0.5 | z | 2
)
B2
1 0.5 z
1
1
) X ( z ) | z 2 4 / 3, B2 (1 0.5 z
n
( 2) u[ n 1])
1
1
) X ( z ) | z 0.5 1 / 3
n
0.5 u[ n]
3
8
3.4 z-transform properties
x[ n]
X ( z )
ROC Rx
z
x1[ n]
X 1 ( z )
ROC Rx1
z
x2 [ n ]
X 2 ( z )
ROC Rx 2
z
z
1.ax1[n] bx2[n]
aX1( z ) bX 2 ( z ),ROC Rx1 Rx2
z
2.x[n n0 ]
z
n
n0
X ( z ),ROC Rx
z
3.z0 x[n]
X ( z / z0 ),ROC Rx | z0 |
9
4.nx[ n]
z
z
dX ( z )
ROC Rx
dz
5.x [ n] X ( z )
*
*
ROC Rx
*
Re x[ n]
X ( z) X ( z )
Imx[n]
X ( z) X ( z )
*
*
*
ROC Rx
2j
z
x [ n]
X (1 / z )
z
ROC Rx
2
6.x[n]
X (1 / z )
*
*
*
*
ROC 1 / Rx
ROC 1 / Rx
10
7.x[n] is causal
x[0] lim X ( z )
z
lim x[ n] lim ( z 1) X ( z )
n
z 1
right lim zX ( z ) X ( z ) lim ( Z [ x[ n 1] Z [ x[ n]])
z 1
z 1
lim [ ( x[n 1] x[n])z ]
n
z 1 n 1
n
lim [ lim
( x[m 1] x[m])z
m
]
z 1 n m 1
lim ( x[0] x[1] x[1] x[0] x[ n 1] x[n])
n
left
z
8.x1[n] x2[n]
X1( z ) X 2 ( z ),ROC Rx1 Rx2
11
N
a
M
k
b x[n k ]
y[ n k ]
k
k 0
k 0
M
H ( z)
Y ( z)
X ( z)
bk z
ak z
k
k 0
N
k
k 0
for
FIR , ak 0, for
k 0
bk h[ k ]
EXAMPLE:
H ( z)
2 z
1
1 0.5 z
z
2
3
z
4
y[n] 2 x[n] x[n 1] x[n 3] 0.5 y[n 2] y[n 4]
12
Relation between H(z) and frequency responce:
10
0
-10
-20
0
0.2
0.4
0.6
0.8
Normalized Angular Frequency (´p rads/sample)
1
0.2
0.4
0.6
0.8
Normalized Angular Frequency (´p rads/sample)
1
600
Phase (degrees)
B=[2,1,0,-1]
A=[1,0,0.5,0,-1]
freqz(B,A)
Magnitude (dB)
20
400
200
0
-200
0
13
H(z)
jω
H(e )
h[n]
convolution(FIR’s realization)
difference equation(IIR’s realization)
14
summary:
3.1 the z-transform
3.2 properties of ROC
right-sides sequence: inside the circle
left-sides sequence: outside the circle
finite-duration sequence: the entire z-plane
two-sided sequence: a ring
causal sequence: including infinite
stable sequence: including the unit circle
3.3 the inverse z-transform:
inspection method
partial fraction expansion
power series expansion
3.4 z-transform properties
15
Keys and difficulties:
ROC;
the convolution property;
the relationship among system function, the
impulse response, frequency response and difference
equation;
exercises: 3.37 3.38
(these can be solved without contour integral method)
16