Transcript pptx

ひので SOT
2013.11.26
一本
観測&装置ゼミ
1.可視光望遠鏡概要
- Optical Telescope Assembly (OTA)
- Focal Plane Package (FPP)
OTA: f50cm
Gregorian Telescope
FPP:
M2
HDM (Heat Dump Mirror)
• OTAとFPPはコリメート光で結び構体変形による焦点移動を
回避
• PMUは瞳像の近くにおきゴミやむらによる輝度変調を排除偏
• 偏光モジュレータ(PMU)までは軸対称な光学系 MT = E
• FPPに向かう光線はTip-tilt mirrorにより像安定化
2次焦点絞り
M1
CLU (collimator Lens Unit)
PMU (Polarizaiton Modulator Unit)
Tip-tilt mirror
OTA
FPP
OBU
SOTセミナー@花山 2004.12.7
OTA光学系の基本パラメータ
Gregorian
telescope
Exiting
beam
Aperture area
f500mm, 153434mm2
Linear central obscuration
0.344 ( = 172/500 )
HDM outer diameter
32.83mm (Maximum offset pointing angle)
Effective f-length at secondary focus
4527 25 mm
Effective F-ratio at secondary focus
9.055 0.05
Plate scale at secondary focus
21.95 mm/arcsec
Field of view
360 x 200 arcsec
Collimation
Collimated in air
Angular magnification
16.667
Exit pupil size
f30.0 mm
Exit pupil position
-73.05 from tip-tilt mirror
Chromatic aberration
Nearly zero (<35mm 388—670nm)
SOTセミナー@花山 2004.12.7
排熱鏡の大きさで決まるSOT(Solar-B)の指向範囲
FOV of Heat Dump Mirror
D◎=32’35”
Sun
SOT FOV
max.offset
= 19.6’
margin ~1.2’
HDM外径 32.83mm
Maximum offset pointing of Solar-B < 19.6’
OTA斜入射危険領域MAP
第2待避領域
q = 25+5o
排熱窓 HDM
全頂角22oコーン
許容滞在時間 ∽
排熱窓
+Y
遷移領域
許容滞在時間 8min – 10hr
主鏡に入射。熱が内部にこもる
Center sec. ~ 45W
Cold plate ~ 72W
Truss ~ 26W(合計)
Sun shade裏 ~ 40W
q = 10 ~ 16o
許容滞在時間 ~12 hr
118o
90o
遷移領域
q = 10 ~ 16o
許容滞在時間 12 hr - ∽
排熱窓 副鏡
全頂角11oコーン
許容滞在時間 ∽
+X
30o
20o
~16o
~10o
4o
衛星後部から太陽を指向
したときの衛星座標軸
安全領域
q > 20o
許容滞在時間 ∽
内スパイダー ~ 240W/cm2
0.327o < q < 4o
許容滞在時間 < 20 min
比較的安全領域
4.5o < q < 9o
f = 0,120,240o + 10o
開口からの排熱 ~ 100W
CLU, PMU, CTM-TM温度  ~90C
許容滞在時間 > 10 hr
排熱鏡円筒 ~ 90W/cm2
副鏡 ~ 215W
0.327o < q < 4o
許容滞在時間 < 20 min
外スパイダー ~ 10W/cm2
4o < q < 10o, f = 60, 180, 300o + 15o
許容滞在時間 < 8 min
安全領域(通常観測時)
q < 0.327o
2000.12.04 MELCO-OTA/NAOJ
2次絞りでも不要な光を排熱
M1 (FM sample)
M2 (FM sample)
CTM-TM (theoretical)
CLU (FM measurement)
BFI wavelengths
NFI wavelengths
8
Optical layout of SOT
Litrow Mirror
Polarizing BS
Spectoro-polarimeter
Dual 256 x 1024 CCD
X3 Mag lens
Polarizing BS
Folding Mirrors
Shutter
Slit
Field lens
Grating
Filterwheel
Field lens
X2 Mag lens
Shutter
Preslit
Broadband Filter Instrument
Filterwheel
Field Mask
4096 x 2048 CCD
Narrowband Filter Instrument
50 x 50 CCD
Secondary
Telecentric
Correlation Tracker
lenses
Demag lens
Beam Distributor
Reimaging Lens
Folding Mirror
Folding Mirror
Image Offset Prisms
HDM
Folding Mirror
Astigmatism
corrector lens
OTA
Primary
Polarization
Modulator
CLU
Tip Tilt Mirror
Color Coding
OTA
Common Optics
CT
NFI
BFI
9
SP
FPP光学レイアウト
SP-CCD
PBS
SP
PBS
BFI
NFI
CT-CCD
- (X, l, P) を同時取得するSP系と(X, Y, P) を同時取得するFG系の共存
- SPはCCD直前のPBSにより両偏光同時取得
- BFIのメカシャッタは像面におき回折限界を確保、
NFIのメカシャッタは瞳位置におき像面内の波長板位相差をなくす
- NFIを通る光線はテレセントリックとし、透過波長は像面内で一様とする
SOTセミナー@花山 2004.12.7
FG-CCD
SP CCD Radiator
SP CCD Electronics
SP Littrow Grating
BFI/NFI Beam Combiner
SP Slit
SP Littrow Mirror
BFI Shutter
BFI Filterwheel
NFI Focalplane
Mask
Beam Distributor
SP Slit Scanner
NFI Shutter
NFI Lyot Filter
NFI Filterwheel
CT CCD Electronics
CT wedge wheel
SOTセミナー@花山 2004.12.7
FPP Mechanical Design
BFI/NFI CCD Radiator
BFI/NFI CCD Electronics
SOT観測波長
Ion
CN I
Ca II H
CH I
Mg I b
Fe I
Fe I
Fe I
Fe I
Na I
Fe I
Fe I
Ti I
HI
l,Å
3883.0
3968.5
4305.0
4504.5
5172.7
5247.1
5250.2
5250.6
5550.5
5576.1
5895.9
6301.5
6302.5
6303.8
6320.0
6562.8
6684.0
SOTセミナー@花山 2004.12.7
Purpose
Magnetic Network Imaging
Chromospheric Heating
Magnetic Elements
Blue Continuum
Chromospheric Dopp./ Mag.
Photospheric Magnetograms
Photospheric Magnetograms
Photospheric Magnetograms
Green Continuum
Photospheric Dopplergrams
Chromospheric Dopp/Mag.
Photospheric Magnetograms
Photospheric Magnetograms
Umbral Magnetograms
Broadband WL for CT
Chromospheric Structure
Red Continuum
geff BFI NFI SP CT
1.33
-








1.75
2.00
3.00
1.50






0.00
1.33
1.67
2.50
0.92
-





SOT観測量と基本スペック
フィルター観測系 (FG)
広帯域フィルター系
狭帯域フィルター系
(BFI)
(NFI)
役割
高分解能単色像の取得 2次元磁場、速度場、
彩層画像の取得
1回の観測量
空間2次元 x1波長
空間2次元 x1波長 x 偏光
視野
218" × 109”
328” × 164”
空間分解能
0.054”/pix
0.08”/pix
観測波長
388.3: CN band
Fe I 525.0: 光球磁場
396.8 (CaII H): 彩層
Mg Ib 517.3: 彩層磁場、速度
430.5: CH G-band
Fe I 557.6: 光球測度場
450.5/555.0/668.4 連続 Na D 589.6: 彩層磁場
光
Fe I 630.2: 光球磁場
H I 656.3 (Hα): 彩層
波長分解能
3-10A
~100mA
波長点数
1
1-4 or > 4
取得時間(狭視野) 1-10 sec
~5sec
(全視野)
10-30 sec
測光精度
0.3 %
0.1-0.5%
SOTセミナー@花山 2004.12.7
スペクトログラフ観測系
(SP)
高精度ベクトル磁場の取得
空間1次元 x 波長1次元 x 偏光
328” × 164”
0.16”/pix, 0.16” slit&scan step
Fe I 630.2: 光球ベクトル磁場
~20mA/pix
244
~5sec
~1 hr
< 0.1%
Tunable Filter
compositionlength (mm)
1
2
3
4
5
6
7
8
PBS
Entrance window
calcite
10.50
quaterwave
polaroid
Motor-1
halfwave
Motor-2
quaterwave
calcite
28.00
partial polaroid
calcite
56.00
quaterwave
polaroid
Motor-3
halfwave
Motor-4
quaterwave
calcite
8.75
polaroid
calcite
7.00
quaterwave
polaroid
Motor-5
halfwave
Motor-6
quaterwave
calcite
56.00
partial polaroid
calcite
112.00
quaterwave
polaroid
Motor-7
halfwave
Motor-8
quaterwave
calcite
14.00
Ext window
SOTセミナー@花山 2004.12.7
normalized
length
6
16
32
5
4
32
64
8
半値幅~100mA
Partial polarizer を用いたLyot ブロック
polarizer
calcite
Partial
polarizer
L
calcite
polarizer
2L
p (p=1で完全偏光板)を小さくするとサイドローブが
抑制される。
Lと2L calcite の速い軸が90o違っていることがミソ。
間のpolarizer がなかったらL+2L でLのLyot
element と等価、その電場がサイドローブの2L電場
を打ち消す。(Title 1974, Sol.Phys., 38, 523.)
Schematics of the SOT polarimeter
Collimator
lens unit
(CLU)
Polarization
modulator unit
(PMU)
HDM
CTM-TM
Astigmatism
corrector lens
(ACL)
M2
M1
Mech. Mask wheel
shutter
NFI- Polarization
analyzer
Reimaging lens
Tunable filter
FG/NFI
Non-polarizing
beam splitter
FG-CCD
Blocking filter wheel
SP
Slit scan mirror
Slit
SP- Polarization analyzer (beam splitter)
SP-CCD left/right
16
Appendix-6:
PMU waveplate
(2007.02.11 BFI retardation from D.Elmore)
5.35l @630nm
6.65l @517nm
The thermal constraint required the quartz and sapphire parts have a thickness ratio of 1.17. Our
compromise: approximately maintain that ratio, while searching for dual-wavelength designs meeting the
N ± 0.35 specification. We succeeded with 5.35 waves at 630 nm and 6.65 waves at 517 nm.
Crystal Retarder Design Strategies: A Tutorial
By Stephen J. Guimond, Meadowlark Optics and David F. Elmore, High Altitude Observatory,
National Center for Atmospheric Research*
l
388.350
396.850
430.500
450.450
517.200
525.000
555.050
589.600
630.200
656.300
668.400
d
9.3380
9.0947
8.2507
7.8240
6.6822
6.5720
6.1664
5.7624
5.3442
5.1095
5.0086
17
Polarization modulation and demodulation
V
U
Q
Waveplate angle [deg.]
PMU segment
SP onboard
demodulation
0
+
+
+
-
1
+
+
-
2
+
-
3
+
+
-
4
+
+
+
+
5
+
+
+
6
+
+
7
+
+
+
8
+
+
+
-
9 10 11 12 13 14 15
+ +
+ + + +
+
- + +
+
+ - + +
- - + + +
+




I’
Q’
U’
V’
18
SOT modulation profiles from the measured PMU retardance
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
V
Q
U
Wavelength
(nm)
Retardation
(wave)
517.3
6.682
525.0
6.572
589.6
5.762
630.2
5.344
656.3
5.110
19
Detection limit of FG for the weak magnetic fields,
e = 0.001
Wavelength
(nm)
geff
G
Pol. Sensitivity
(diagonal element of X)
Detection limit for B
(Gauss)
V
QU
Bl
Bt
MgI 517.2
1.75
2.88
0.577
0.452
37
970
FeI 525.0
3.00
9.00
0.266
0.609
15
210
FeI 557.6
0.00
0.00
-
-
-
-
NaI 589.6
1.33
1.33
0.633
0.297
21
1240
FeI 630.2
2.50
6.25
0.526
0.503
10
240
HI 656.3
1.33
1.33
0.402
0.073
78
>5000
B// ~
1
1
e
x33 g eff l2 dI ' / dl
max
B 2 ~
1
x11 G l2
 
2
I’: line profiles convoluted by TF transmission curve
1
d 2 I ' / dl2
e
G  G1(2) - G0(2)
2nd moments of s and p-components
max
20
SOT polarimetric observables
SP (Spectropolarimeter)
FeI 6301 & 6302A full Stokes profiles
Dual beam
Continuous readout, 16 frames/rev.
Onboard demodulation/accumulation
NFI (Narrowband Filter Imager) 0.1A Lyot filter
Shutter mode
Shutterless mode
Use mechanical shutter
Expose entire CCD simultaneously
Continuous readout, 16frames/rev
Central portion w/ focal plane mask
CCD
1
Example of
shutter timing
Stokes-V obs.
2
Left/right sequential frame transfer 21
SOT observables
FG:
- simple image
- Dopplergram (2 wavelengths)
- Stokes IV
- Stokes IQUV
- IVDG (2 wavelengths)
SP:
- normal mode (0.16” step, 4.8s/slit)
- fast mode (0.32” step, 3.2s/slit)
- dynamic mode (0.16” step, 1.6s/slit)
- deep mode (0.16” step, 9.6s/slit)
22
試験
•
•
•
•
•
•
光学性能
機械環境
熱光学
微小擾乱
偏光特性
アウトガス
23
5. OTA flight model integration
clinometer
Vertical meter
 OTA is integrated on a
dedicated tower.
 Interferometoric measurement
is performed with f60cm
reference flat at the top of tower.
 OTA can be upside top and
upside down to cancel gravity.
Target mirror
Reference flat
Alignment
cube
M2
Dummy
OBU
OTA
Interferometer
MiniFiz
Six axis
stage
Rotation
mechanism
M1
Telescope Up
Optical bench
24
OTA光学測定
SOTセミナー@花山 2004.12.7
OTAの結像性能
OTA波面 重力変形による3角アス
上下反転により求めた無重力での WFE
20nm rms ~ l/32 rms @633nm
||
Strehl ~ 0.96
軌道上温度変化により徐々に劣化する.
ミッション期間 において Strehl > 0.8
SOTセミナー@花山 2004.12.7
OTA Opto-thermal testing -- motivation
Predicted OTA temperature in orbit
-1.7 ~ 25.0 C
Heater control
-21.5 ~ 4.4 C
-27.8 ~ 4.6 C
21.1 ~ 67.3 C
1.1 ~ 16.3 C
Large T from the
ground testing.
Large dT/dz.
19.9 ~ 43.2 C
16.0 ~ 30.0 C
26.2 ~ 45.7 C
Heater control
27
OTA Opto-thermal testing -- configuration
Reference mirror
 OTA pointing ax.
Theodolite
 OTA center of FOV
Upper
shroud
OTA
WFE of OTA is measured
in a dedicated vacuum
Dummy OBU
chamber. Two shrouds
control the OTA
temperature as it is in orbit. Support
interferometer
theodlite
 alignment cube.
OTA alignment cube
Lower
shroud
flat mirror
Tilt/shift stage
shroud
Flat mirror
reference
Autocollimator
 OTA pointing ax.
28
・副鏡ヒータOn/Off でフォーカスがガンガン変わる
・排熱鏡スパイダーの温度でフォーカスが変わる
・望遠鏡が真空中で縮む
・スパイダーに張ったケーブル止めメタルでフォーカス
が変わる
・主鏡面形状の温度による不連続変化
29
2.擾乱源
Solar-Bの中にある可動物
モメンタムホイール(MW x 4台)、
慣性系基準装置(ジャイロ:IRU-A, IRU-B)、
FPP
SOT:
IRU-B1,B2
XRT:
IRU-BOX
IRU-SA
EIS:
Fホイール3台、シャッター2個、
回転波長板1個、チュナブルフィルタ、
スリットスキャン、計8
Fホイール2台、シャッター1個
可視光シャッター1個、フォーカス、
計5
スリットタレット1台、シャッター1個
ミラーtilt粗微、計4
擾乱の周波数と大きさ(擾乱力は初期予想値)
MW
.
擾乱源
擾乱力(N)
擾乱周波数(Hz)
IRU-A
0.3
130
IRU-B1,B2
1
155
MW
0.1~1
30~50
「ひので」可視光望遠鏡の像安定要求 = 0.09”(3s) / 10sec
像の振動と点像の劣化
l=500nm
l=390nm
要求値
画像が1方向に正弦波的に振動したときの回折限界点像(上:500nm, 下:390nm)。
SOT system overview
CCD 50 x 50pix, 540Hz
像安定化装置(CT)が画像を安定化するのは15Hz 以下。
32
2006.10.31 CT servo-On, error signal/TM angle time profiles
Servo-off
2010.2.5
3.指向擾乱測定方法
加速度センサーによる測定
望遠鏡鏡に加速度センサー取り付け
衛星バネ吊り
MTM
レーザー光による測定
FPP光学センサーによるend-to-end
衛星床置き
FM
630nm tunable laser
theodolite
PSD
dolly
長所:建物からのノイズが小さい
Free-Free境界条件の模擬ができる
短所:像擾乱の間接的な測定、M1//M2のみ
長所:光学的にend-to-end な測定
短所:建物からのノイズが大きい
軌道上と境界条件が異なる
一噛み(2004.11)における2つの測定(フライト品)
衛星をバネで吊り上げ、望遠鏡の鏡に取り付けた加
速度センサーで擾乱を測定する。
衛星を頑丈なタワーの中に置き、光を望遠鏡に入れ
て画像から擾乱を測定する。
Seq.4 吊り下げ
total
周波数方向に積分したモメンタ
ムホイールによる指向誤差。
1800+100rpm or
2800+100rpm
最終フライトモデルによる擾乱測定結果
0.07
Before vib. 2005.9.28
Post-vib. 2005.10.26
Post-TV. 2006.7.8
arcsec rms
0.06
0.05
0.04
0.03
0.02
0.01
IRU-B1/2 -Y
IRU-B1/2 -X
IRU-A -Y
IRU-A -X
XRT-FW2-Y
XRT-FW2-X
XRT-FW1 -Y
XRT-FW1 -X
XRT-VLS -Y
XRT-VLS -X
FPP-BFI-FW -Y
FPP-BFI-FW -X
FPP-NFI-FW-Y
FPP-NFI-FW -X
0
主な稼動メカニズムについて総合試験における3回の測定結果を並べて表示してある。要求レベル
(0.03”rms)を超えているのはXRT-VLS(可視光シャッタ)のみである。XRT-VLSについては使用頻度を
低く抑える(1時間に1回程度)ことで観測への影響を回避する。
Configuration of a spectro-polarimeter
S
can be modeled by a chain of Mueller matrices
S’
detector
Telescope, MT
Spectrometer, Polarization
analyzer, MA
MF
Feed optics, MB
Polarization
modulator, MP,k
S'k = MFMAMBMP, k MTS = MS
S: incident stokes vector
S’k: Stokes vector at detector
MT
Upper stream
telescope
MP
Polarization modulator (PM)
Ex. Rotating waveplate
MB
Between PM and PA
Folding mirror
MA
Polarization analyzer (PA)
Polarizer, polarizing beam splitter
MF
After PA
Filter, detector
39
Schematics of the SOT polarimeter
Collimator
lens unit
(CLU)
Polarization
modulator unit
(PMU)
HDM
CTM-TM
Astigmatism
corrector lens
(ACL)
M2
M1
Mech. Mask wheel
shutter
NFI- Polarization
analyzer
Reimaging lens
Tunable filter
FG/NFI
Non-polarizing
beam splitter
FG-CCD
Blocking filter wheel
SP
Slit scan mirror
Slit
SP- Polarization analyzer (beam splitter)
SP-CCD left/right
40
Flow of the polarization measurement
‘Polarization measurement’ is achieved by measuring
a number of I’ (first element of S’) at different Mp
I’k = mI,k I + mQ,k Q + mU,k U + mV,k V
k = 1,2,,,,N
modulation:
 I '1   m11,1
  
 I ' 2   m11, 2
   
  
    
 I'  m
 N   11, N
m12 ,1
m13,1
m12 , 2
m13, 2




m12 , N
m13, N
demodulation:
S = D I’
for N > 4
m14 ,1 
 I
m14 , 2   
Q
    
 U
   
V
m14 , N   
 I '   m11 m12
  
 Q'   m21 m22
U '    m
m32
   31
V '  m
   41 m42
m13
m23
m33
m43
m14  I 
 
m24  Q 
m34 U 
 
m44  V 
S’k = Mk S

obtain S from [I’]
I’ = W S
W: 4 x N matrix
polarization measurement
matrix
D : N x 4 demodulation matrix
D = ( Wt W)-1 Wt
--- least square solution of S
(ideal demodulation matrix)
41
Polarization modulation and demodulation
V
U
Q
Waveplate angle [deg.]
PMU segment
SP onboard
demodulation
0
+
+
+
-
1
+
+
-
2
+
-
3
+
+
-
4
+
+
+
+
5
+
+
+
6
+
+
7
+
+
+
8
+
+
+
-
9 10 11 12 13 14 15
+ +
+ + + +
+
- + +
+
+ - + +
- - + + +
+




I’
Q’
U’
V’
42
Flow of the polarization measurement
SOT polarimeter
Incident to
polarimeter
Polarization
modulation
+ noise
modulated
intensity
Incident
Stokes
vector
ST = TS
I’ = W ST + e
I’
S
Telescope
ST
on-board
demodulation
S’ = D I’
X: Polarimeter response matrix (4x4)
S’ = X S
Measurement
error: S
S’
S”
SOT
product
Ground
calibration
reduced
Stokes
vector
Xr-1S’  S”
X : true matrix
Xr : matrix determined by polarization calibration
Calibration error: S” = S” – S = Xr-1 XS – S = (Xr-1 X – E) S
Statistical noise: dS” = Xr-1dS’ = Xr-1 e
43
Requirement on X
Calibration error : S = S” - S = { Xr-1X- E } S
Statistical noise : dS” = Xr-1dS’ = Xr-1e
e  e , e, e, e t
photometric noise
Requirement =
X
-1
r
S < dS”

-1
X - E  S < Xr ε
 X - Xr   S  X  S < ε
X ≡ X- Xr : required accuracy for Xr
44
Requirement on X
X S < e
Scale errors
 11 12
 i 

 

q
   X S    21  22
  31  32
 u 

 
 v 
  41  42
13
 23
 33
 43
14   1   e 

 24   q   e 
<

 34  u   e 
   
 44   v   e 
[ Q,U,V ] / I = Pobs = (1 + ds) Preal + db
false signal error < e
scale error < a (allow ambiguity, cf. Stokes inversion)
Difference between p= 0% and p= 0.1% is important, but
difference between p=10% and p=10.1% is not important
45
Requirement on X
Scale errors
 11 12
 i 

 

q
   X S    21  22
  31  32
 u 

 
 v 
  41  42
Let’s
13
 23
 33
 43
14   1   e 

 24   q   e 
<
 34   u   e 
   
 44   v   e 
q, u  pl
- maximum linear polarization from the sun
v  pc
- maximum circular polarization from the sun
Consider individual elements and allow scale error < a
then
11 < a, 12 pl < a, 12 pl < a, 14 pc < a
 21 < e ,  22 pl < a,  22 pl < e ,  24 pc < e
 31 < e ,  32 pl < e ,  32 pl < a, 34 pc < e
 31 < e ,  42 pl < e ,  42 pl < e ,  44 pc < a
46
Requirement on X
Scale error
 - a / pl a / pl a / pc 


e
a
e
/
p
e
/
p
l
c
X < 
 e e / pl
a
e / pc 


e
e
/
p
e
/
p
a
l
l


Hinode, SOT
e = 0.001
a = 0.05
pl = 0.15 (max of Q,U)
pc = 0.2 (max of V)
 
0.001

X <
 0.001

 0.001
0.333
0.050
0.007
0.007
0.333
0.007
0.050
0.007
0.250 

0.005 
0.005 

0.050 
Tolerance of X (≡ O)
Goal of polarization calibration is to determine the polarimeter
response matrix, X, with an accuracy defined by this tolerance matrix.
47
Polarization tolerance of optical element
How to specify the required accuracy for polarization
properties of individual optical elements
1. Calculate polarimeter response matrix with and without
an error (p) of polarization property of an element.
2. Compare X ≡ X- Xr with the tolerance matrix (O)
3. If all elements of |X| are smaller than the
corresponding elements of O, then error p is acceptable, if
one of them exceeds, then error p is not acceptable.
48
Tolerance of optical element
Example: rotating waveplate
S
φ
 I' 
 
 Q' 
U ' 
 
V ' 
X (q)
I
 
Q 
U 
 
V 
ret: δ, angle: q
Tolerance of angle ~ 0.1deg. from Q-U crosstalk
X (d)
Tolerance of ret.~ 3.7deg. from V scale error
49
Tolerance of optical element
Polarimeter model
MT = E
MP = ideal rotating waveplate with d =126.7deg. 16 sampling
MB = MCTM-TM
MA = Mdiat with k=0.01
MF = Mdiat with k=0.001
MA
0.0010
(IQ,U)
0.0053
(UV)
0.0073*
(Q-U)
No matter
Retardation
(deg)
0.286
(VU)
3.687
(dV)
0.419*
(QV)
No matter
MF
No matter
No matter
Location Diattenuation
MT
MP
MB
Orientation Depolarization
(deg)
0.050
No matter
(dQ,U,V)
0.050
0.095
(dQ,U,V)
(Q-U)
0.050
0.100
(U-Q)
(dQ,U,V)
No matter
0.233
(Q-U)
No matter
2.100
(Q-U)
* For errors whose axes are 45o to the PA-axis. Such error can occur for off-axis rays (~0.7deg.160” 50
in FOV) in collimated beam entering on CTM-TM or BS.
Appendix-4:
CLU coatings
theoretical
polarization
Calibration flow of SOT polarization
(2006.2.27)
CLU glass stress
measurement (in NAO)
45o Ag coating
theoretical
polarization
Calculate MTTM
over FOV
CTM-TM
(FM and flight Spare)
Polarization Test
(in Japan)
MTTM
over FOV
Spare TTM
MTTM =const
CLU coat samples
measurement (in HAO)
Acceptance tests
of FPP optics
(in PaloAlto)
MPMU, MFPP
over FOV
Measure X with
PMU+TTM+FPP
(in PaloAlto)
Calculate X
over FOV
X
over FOV
Ag coat sample
check
measurement (in HAO)
check
CLU Polarization Test
(in Japan)
•over field of view
•over pupil plane
•vs temperature
•vs vibration/T-cycle
Ag coating
theoretical
polarization
Calculate MCLU
over FOV
•vs temperature
•vs temperature gradients
MCLU over
ACL Polarization
Test
FOV & Temp
•over field of view
•vs temperature
MACL over
MCLU !=1
FOV & Temp
Obs. sequence
(XMT)-1
calibration matrix
over field of view
Calculate MGT
over FOV
MGT
over FOV
MGT ~1
MACL ~1
MT !=1
MT over
FOV & (Temp)
MGT = Gregorian Telescope Mueller Matrix
MCLU = CLU Mueller Matrix
Tuning after launch
using observed data
SOT polarization cal
@Suntest (in NAOJ)
MACL = Astigmatism Corrector Lens Mueller Matrix
MT = MACL MCLU MGT
X = PMU+TTM+FPP Polarimeter Response Matrix51
Tolerance of optical element
Another example: CLU (Collimator Lens Unit)
Collimator
lens unit
(CLU)
Polarization
modulator unit
(PMU)
HDM
CTM-TM
Astigmatism
corrector lens
(ACL)
M2
M1
Mech. Mask wheel
shutter
NFI- Polarization
analyzer
Reimaging lens
Tunable filter
FG/NFI
Non-polarizing
beam splitter
FG-CCD
Blocking filter wheel
SP
Slit
SP-CCD left/right
Slit scan
mirror
SP- Polarization analyzer (beam
splitter)
52
Tolerance of optical element
Another example: CLU
CLU Mueller matrix image at different temperatures (example)
T=15C (from 20C)
T=30C (from 40C)
Rectangular shows the SOT field of view.
Interval of contours indicates the tolerance of each Mueller matrix element.
54
Hysteresis of (3,4) element (=linear retardation) of the CLU
Mueller matrix against temperature
after 4th cold cycle
after vibration
after 2nd /3rd cold cycle
after 1st cold cycle
initial
torelance
CLU operational temperature was set as 25C < T <35C
55
2. Polarization calibration test method
Test configuration
Heliostat
mask
window
(I,Q,U,V)
- Entire SOT is located under a
heliostat in a clean room.
- Sunlight fed by the heliostat
- Sheet polarizers (linear, L/R
circular) on OTA
- Room T=20C, CLU T>25C
Sheet polarizer
FPP
56
Definition of SOT polarization coordinate
This definition is applied to the Stokes vectors obtained after application of
the X-matrix. Raw Stokes products of FPP are not consistent with this definition.
-Q
-U
+U
N
-V
-Q
-U
FPP
+U
W
+Q
E
+Q
+V
-V
S/C +Y
+V
S
S/C +X
View from the top of SOT
View towards the sun
This definition is the same as that used in the analysis of the suntest data of 2004.8 and consistent
with the ASP definition, ie. positive V at blue side of spectral line gives positive magnetic flux. This
is also consistent with the definition of Stokes V: (right circ. – left circ.), where right circular
polarization is positive when electric vector rotates clockwise looking at the source.
57
SP: Fitting results for polari. cal. data
SP: CCD center
SOT product I
Symbols: observed
Lines: fitting
SOT product Q,U,V
U
Left CCD
Right CCD
Q
V
58
SP X matrix
x matrices at scan center; CCD image
each element is scaled to median + tolerance, x00 (=1) is replaced by I-image
Median Mueller matrix
Left
1.0000
0.0028
0.0022
-0.0034
-0.2232 -0.0142 -0.0063
-0.4819 -0.0642 0.0007
-0.0529 0.4814 -0.0030
-0.0026 0.0043 0.5249
Right
1.0000
-0.0039
-0.0021
0.0035
The X matrix can be regarded as constant over the CCD.
0.2077 0.0199 -0.0079
0.4886 0.0551 0.0005
0.0427 -0.4918 0.0034
0.0013 -0.0044 -0.5304
59
spxmat_0506p.pro
x-matrix elements against the scan position
Each point is the median in the CCD, scale = average + 0.01,
dotted horizontal lines show tolerances for each element
2005/06/13
Asterisk: Left CCD
Diamond: right CCD
Include 5/14 data at scan center
spxmat_0506p.pro
The x matrix can be regarded as constant over the scan position
60
Polarization test summary, NFI T matrix
Average T matrix
STD deviation of fitting residual
6563
0.9893
-0.0121
-0.0052
-0.0049
-0.0420
0.9541
0.0088
-0.0285
-0.0491
0.0190
0.9764
-0.0135
0.0018
0.0072
0.0205
1.0070
0.0000
0.0006
0.0010
0.0008
0.0117
0.0025
0.0011
0.0010
0.0296
0.0005
0.0015
0.0019
0.0113
0.0009
0.0013
0.0067
6303
0.9976
0.0108
0.0030
-0.0050
0.0101
0.9990
0.0131
0.0437
0.0276
0.0145
0.9983
0.0099
0.0031
-0.0025
-0.0157
0.9763
0.0000
0.0069
0.0080
0.0021
0.0020
0.0087
0.0022
0.0079
0.0010
0.0062
0.0036
0.0017
0.0086
0.9951
0.0091
0.0013
-0.0099
0.0008
0.9970
0.0147
-0.0178
0.0730
0.0144
1.0021
0.0111
-0.0006
-0.0010
-0.0143
0.9927
0.0075
0.0046
0.0016
0.0031
0.0107
0.0018
0.0049
0.0009
0.0028
0.0013
0.0019
0.0103
0.9994
0.0113
0.0030
-0.0169
0.0061
0.9996
0.0136
-0.0459
0.0141
0.0131
1.0031
0.0025
-0.0082
0.0011
-0.0169
0.9931
0.0040
0.0083
0.0033
0.0015
0.0148
0.0046
0.0137
0.0020
0.0199
0.0027
0.0042
0.0074
0.9998
-0.0007
-0.0018
-0.0139
0.0007
1.0003
0.0093
0.0543
-0.0296
0.0077
0.9863
-0.0246
-0.0458
-0.0077
0.0149
0.9901
5896
5250
5172
0.0028
0.0012
0.0015
0.0000
0.0018
0.0018
0.0010
0.0000
0.0032
0.0043
0.0011
-
-
-
-
SP product from Suntest in Aug.2004
FeI6302A
SOTセミナー@花山 2004.12.7
I
Q
U
V
SP polarization in continuum (x=0-4)
min ~ -0.13%
63
Lites and Ichimoto, 2013, Sol.Phys.
Trend of SP Q/I in continuum
1st spectrum each day
Continuum in x=0-4, only CCD left
Averaged in slit center +/- 10
Dark is not subtracted from I
Slit-pos < -500
Slit-pos = -500 ~ -100
sp_longtrend.pro
BFI 光量の変遷