Transcript ai2004 4538

Weak Gravitational Lensing and
Shapelets
Alexandre Refregier (CEA Saclay)
Collaborators:
Richard Massey (Cambridge)
David Bacon (Edinburgh)
Tzu-Ching Chang (Columbia)
Jason Rhodes (Caltech)
Richard Ellis (Caltech)
Jean-Luc Starck (CEA Saclay)
Sandrine Pires (CEA Saclay)
IPAM/UCLA – January 2004
Weak Gravitational Lensing
Distortion Matrix:
i
 2
ij 
  dz g ( z )
 j
 i  j
Theory
 Direct measure of the distribution of mass in the universe,
as opposed to the distribution of light, as in other methods
(eg. Galaxy surveys)
Weak Lensing Shear Measurement
unlensed
lensed
background
background
galaxies
galaxies
mass and shear distribution
Scientific Promise of Weak Lensing
From the statistics of the shear field, weak lensing provides:
• Mapping of the
distribution of Dark
Matter on various scales
• Measurement of the
evolution of structures
• Measurement of
cosmological
parameters, breaking
degeneracies present in
other methods (SNe,
CMB)
• Explore models beyond
the standard osmological
model (CDM)
Jain, Seljak & White 1997, 25’x25’, SCDM
Cosmic Shear Surveys
PSF anisotropy
William Herschel
Telescope
La Palma, Canaries
Deep Optical
Images
Correct for
Bacon, Refregier & Ellis (2000)
systematic effects: Bacon, Refregier, Clowe & Ellis (2001)
Shear Measurement Method
KSB Method:
(Kaiser, Squires & Broadhurst 1995)
Quadrupole moments:
 
Qij   d x xi x j w( x ) I ( x )
Ellipticity:
Q11  Q22
2Q12
1 
, 2 
Q11  Q22
Q11  Q22
2
PSF Anisotropy correction:
 g   'g 
2
1
Pgsm
sm
*
P
*
PSF Smear & Shear Calibration:

  (P )  g
1
Cosmic Shear Measurements
Shear variance in circular
cells:
2
2

+ Rhodes et al.
 ()=< >
Bacon, Refregier & Ellis 2000*
Bacon, Massey, Refregier, Ellis 2001
Kaiser et al. 2000*
Maoli et al. 2000*
Rhodes, Refregier & Groth 2001*
Refregier, Rhodes & Groth 2002
van Waerbeke et al. 2000*
van Waerbeke et al. 2001
Wittman et al. 2000*
Hammerle et al. 2001*
Hoekstra et al. 2002 *
Brown et al. 2003
Hamana et al. 2003 *
* not shown
Jarvis et al. 2003
Casertano et al 2003*
Rhodes et al 2004
Cosmological Constraints
Hoekstra et al. 2002
E
<Map2>
B
<Map2>
 (arcmin)
E/B decomposition
 m 
8

 0.3 
0.52
 0.81  0.08
Normalisation of the Power Spectrum
Rhodes et al. 2003
 Moderate disagreement
among cosmic shear
measurements
(careful with marginalisation)
 Non-linear clustering
corrections (Cf. Smith et al.)
 This could be due to
residual systematics (shear
normalisation? Cluster
physics?)
 Agreement on average
with cluster and CMB+LSS
constraints
Future Surveys
Survey
start
DLS
Diameter FOV Area
(m)
(deg2) (deg2)
24
20.3 28
CFHTLS
3.6
1
172
2003
VST
2.6
1
x100
2004
VISTA
4
2
10000
2007
Pan-STARRS
41.8
44
31000
2008
LSST
8.4
7
30000
2012
SNAP/JDEM
2 (space) 0.7
300
2014
1999
The Shapelet Method
|
fnm =
>
<
= f00
>
>
|
|
+ f01
|
>
+…
Refregier (2001)
Refregier & Bacon (2001)
also: Bernstein & Jarvis (2001)
Decomposition of a galaxy image into shape components:


f ( x )   f n1n2 Bn1n2 ( x ;  )
n1n2
f n1n2


  d x f ( x ) Bn1n2 ( x ;  )
2
Orthogonal
Basis functions
Gauss-Hermite Basis Functions
Bn ( x;  )  H n (  x)e
1
 x2 / 2 2
Bn1n2 ( x, y;  )  Bn1 ( x;  ) Bn2 ( y;  )
• Perturbations around a gaussian
• Eigenfunctions of the Quantum
Harmonic Oscillator
• Coefficients are gaussianweighted multipole moments
• Capture a range of scales:
min   / n  1, max   n  1
m =rotational oscillations (c.f. QM Lr
momn)
Polar Shapelets
n=radial
oscillations
(c.f. QM energy)
n =radial
oscillations
(c.f.
QM energy)
m=rotational oscillations (c.f. QM Lr momn)
HST galaxy Image
 Faithful description with a few shapelet coefficients
Image Compression
Keep the top largest coefficients
 Achieve compression factors
of 40-90 (for well resolved HST
galaxies)
Fourier Transform and Convolution
Convolution with a gaussian:
Basis functions are invariant under
Fourier transform (up to rescaling):
~
n
1
Bn (k ,  )  i Bn (k ,  )
Convolution:


h( x )  ( f  g )( x )
hn   Cnml f m gl
ml
convolution tensor
(analytic)
Coordinate Transformations
Transformations:
• translations
• rotations
• shears
• dilatations
f  f '  (1   i Sˆi ) f
1
2
2
2
2
ˆ
ˆ
ˆ
ˆ
ˆ
S1  2 (a1  a2  a1  a2 )
Eg: effect of shear
on a galaxy image:
 simple operations
in shapelet space
Difference
Shear Measurement
1 = 0.1
2 = 0.1
Shear Estimators:
ˆin 
fn  fn
S inm f m
 Combine estimators for minimum
variance
***To be
replaced
Shear Measurement
Shear recovery with ground based
simulations:
(Refregier & Bacon 2000)
Advantages:
• All shape information used
• Deconvolution recovers all
available coefficients
• Linear estimator  noise biases
are minimised
• Minimum variance estimator
 Lensing signal is maximised
• Analytic and mathematically welldefined
• Stable and accurate
Simulating Space-Based Images
• Decompose HDF galaxies into
shape components (“shapelets”)
• Simulated galaxies are drawn from same
parameter space
• Add noise, background, PSF, shear etc
as required
a12
a11
• Ensures simulated images have
same statistical properties as true HDF
• Realistic illustration of SNAP science
Massey, Refregier, Conselice & Bacon 2002
Shapelet Parameter Space
-functions representing every HDF
galaxy are placed into an n-dimensional
parameter space, with each axis
corresponding to a (polar) shapelet
coefficient or size/magnitude.
The PDF is:
• kernel-smoothed (assume a smooth underlying PDF exists)
• Monte-Carlo sampled, to synthesise new ‘fake’ galaxies.
Used in sims
Used in sims
param space
smoothing
param space
smoothing
Real HDF
Real HDF
Smoothing in Shapelet Space
Massey et al. (2002)
Simulated SNAP images
Test of the Simulations
Asymmetry
Blind test: run Sextractor and
morphology software on HDFs and
simulated images.
Concentration
Weak Lensing Sensitivity
Galaxies per
arcmin2
RMS noise
for the shear
per galaxy
RMS noise for the
shear in 1 arcmin2
cell
Prospects for SNAP
zS > 1.0
zS < 1.0
SNAP wide survey
Rhodes et al. 2003, Massey et al. 2003, Refregier et al. 2003
 SNAP will measure the evolution of the lensing power spectrum
and set tight constraints on dark energy
input
Wiener filter
Dark Matter Mapping:
Space
observed
Wavelets
Starck, Refregier & Pires 2004
E: Lensing
E/B Decomposition
B: systematics
FIRST Radio Survey
Faint Images of the Radio Sky at Twenty-cm
•VLA B-array at 1.4 GHz
•10,000 deg2 area (~SDSS)
•Resolution of 5”.4
• 90 Sources / deg at 1 mJy
•<z>~1
Becker,White Helfand (1995)
White,Becker,Helfand,Gregg
(1997)
Snapshot survey
Sparse UV sampling
Simulations
Same observing condition as FIRST survey
FWHM
Beam
Input
Recovered
Parallel code on COSMOS Origin2000:
23 Sources, ~ 200 parameters, ~18,000 visibilities
~1.5 GB memory, ~30 sec with 10 processors
Cosmological Constraints
Chang, Refregier & Helfand 2004
Constraints consistent with current measurements of
8 and current knowledge of the redshifts of radio sources
Cosmic Shear with SKA
Square Kilometer Array:
• an international project planned to be constructed in 2010
• FOV ~ 1 deg2 at 1.4 GHz, PSF ~ 0”.1
Assuming 6 month’s observation:
• 540 deg2 , beam FWH ~ 0”.1
• source number density:
~100 sources arcmin-2 (~ HDF)
• < z > =1
•  ~ 0.5
Conclusion
• Weak Lensing provides a powerful measure of largescale structure and cosmological parameters
• Shapelets provides a high-precision shape
measurement method required for future surveys
• Other applications of shapelets: astrometry &
photometry, study of galaxy morphology, de-projection,
multi-color morphology
shapelet web page: http://www.ast.cam.ac.uk/~rjm/shapelets.html